


table of contents

February 1997,  
Volume 48, Issue 1 

Articles

SoftBench 5.0: The Evolution of an Integrated 
Software Development Environment 
by Deborah A. Lienhart 

The C++ SoftBench Class Editor 
by Julie B. Wilson 

The SoftBench Static Analysis Database  
by Robert C. Bethke 

CodeAdvisor: Rule-Based C++ Defect Detection 
Using a Static Database 
by Timothy J. Duesing and John R. Diamant 

Using SoftBench to Integrate Heterogeneous 
Software Development Environments  
by Stephen A. Williams 

The Supply Chain Approach to Planning and 
Procurement Management  
by Gregory A. Kruger 

A New Family of Sensors for Pulse Oximetry 
by Siegfried Kästle, Friedemann Noller, Siegfried 
Falk, Anton Bukta, Eberhard Mayer, and Dietmar 
Miller 

Design of a 600-Pixel-per-Inch, 30-Bit Color 
Scanner  
by Steven L. Webb, Kevin J. Youngers, Michael J. 
Steinle, and Joe A. Eccher 

javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/prodserv.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/prodserv.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/support.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/support.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/solutions.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/solutions.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/howtobuy.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/howtobuy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://www.hp.com/go/search-us-eng/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hp.com/go/search-us-eng/'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/contact.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/contact.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/covfeb97.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/ahead-0297.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/past.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/journal.html
javascript:if(confirm('http://www.hpl.hp.com/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/'
javascript:if(confirm('http://www.hpl.hp.com/about/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/'
javascript:if(confirm('http://www.hpl.hp.com/research/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/research/'
javascript:if(confirm('http://www.hpl.hp.com/news/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/news/'
javascript:if(confirm('http://www.hpl.hp.com/jobs/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/jobs/'
javascript:if(confirm('http://www.hpl.hp.com/techreports/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/techreports/'
javascript:if(confirm('http://www.hpl.hp.com/about/sites.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/sites.html'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba1.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba1.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba2.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba2.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba3.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba3.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba4.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba4.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba5.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba5.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba6.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba6.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba7.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba7.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba8.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba8.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba9.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba9.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba10.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba10.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba11.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba11.htm'
javascript:if(confirm('http://www.hpl.hp.com/hpjournal/97feb/97feba12.htm  \n\nThis file was not retrieved by Teleport Pro, because the server reports that this file cannot be found.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/hpjournal/97feb/97feba12.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a8.htm


Building Evolvable Systems: The ORBlite 
Project  
by Keith E. Moore and Evan R. Kirshenbaum 

Developing Fusion Objects for Instruments  
by Antonio A. Dicolen and Jerry J. Liu 

An Approach to Architecting Enterprise 
Solutions  
by Robert A. Seliger 

Object-Oriented Customer Education 
by Wulf Rehder 

file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/97feb/feb97a12.htm
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/privacy.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/privacy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/termsofuse.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/termsofuse.htm'


Article 1 February 1997 Hewlett-Packard Journal      1

SoftBench 5.0: The Evolution of an

Integrated Software Development

Environment

The vision and objectives of the original SoftBench product have
enabled it to continue to be a leader in the integrated software
development market. For example, since SoftBench 1.0, over 80
third-party software tools have been integrated with SoftBench.

by Deborah A. Lienhart

HP SoftBench is an integrated software development environment designed to facilitate rapid, interactive program
construction, test, and maintenance in a distributed computing environment. The SoftBench product contains an integration
framework and a set of software development tools, as well as the ability to integrate tools from other sources.

SoftBench was released in 1989 and presented in the June 1990 HP Journal.1 At that time, no one would have guessed the
market changes that would occur during SoftBench’s life. Fortunately, the vision and objectives of the original product
designers have allowed SoftBench to continue to be a leader in the integrated software development market.

This article presents the actions that have made SoftBench a standard in the integrated software development market, the
original SoftBench objectives that have stood the test of time, and the new technologies that have been incorporated into
SoftBench. Other articles in this issue will present more information about the new technologies in SoftBench.

The different versions of SoftBench released since its introduction in 1989 are shown in Fig. 1.

SoftBench Configuration
Management
1.0

COBOL SoftBench

C++ SoftBench

C SoftBench

’90 ’91 ’92 ’93 ’94 ’95 ’96

1.0 2.0 3.0 4.0 5.0

4.0 5.0

5.02.0 3.0 4.01.0

3.0

’89

Fig. 1. The different versions of SoftBench released since 1989.

Making SoftBench the Standard
SoftBench defined the open, integrated CASE (computer-aided software engineering) market. The first big challenge was to
make SoftBench pervasive in the market. We used several approaches, including leading standards development, working
with software tool providers, and licensing the framework source code. HP started and supported CASE Communiqué, a
standards body that focused on defining the messages used for intertool communication. This work was adopted as the basis
of intertool communication standards for software development tools by the ANSI X3H6 Committee.

HP worked with software tool providers, both through CASE Communiqué and with independent software vendor (ISV)
programs, to provide SoftBench integration for their tools. There have been over 80 third-party software tools integrated
with SoftBench, and we continue to see interest from software tool vendors who want to integrate their tools with
SoftBench.

The source licensing program was interesting to many companies for a number of reasons. Some companies ported
SoftBench to their hardware, added some tools, and sold it to their customers. Several other companies have ported
SoftBench to their own hardware for use by their internal development organizations. One company, SAIC (Science
Applications International Corporation), conracts with customers to provide cross-development support for other, usually



Article 1 February 1997 Hewlett-Packard Journal      2

non-UNIX,  platforms. This is used mainly for legacy system support or to develop software for platforms that can’t support
a native application development environment. This is the only part of the source licensing program that is still active.
Article 5 describes the activities of the Science Applications International Corporation.

The SoftBench broadcast message server (BMS) framework was adopted by other HP products and some customers’
products, in addition to its use in SoftBench. The biggest user of the BMS framework is HP VUE (Visual User Environment).
BMS provides the same open integration of desktop tools in HP VUE that it provides for software tools in SoftBench. For
software developers, BMS also provides an integration of the desktop tools with software development tools.

Original Objectives of SoftBench
The SoftBench framework continues to provide the foundation for SoftBench and has stood the test of time. The following
are the original objectives of the SoftBench architecture and the changes that have taken place.

Support Integrated Toolsets. This goal dictated that the SoftBench tools should cooperate to provide a task-oriented
environment that lets users concentrate on what they want to do, not how to do it. SoftBench continues to provide a
task-oriented environment by allowing tools to be started from each other. For example, in most SoftBench tools you can
show the references for any symbol via the static analyzer.

Some users prefer a tool-focused environment, so SoftBench 5.0 has a new ToolBar to make it easier to see what tools are
available in SoftBench (see Fig. 2).

Fig. 2. A ToolBar screen.

Support Interchangeable Tools. The concept of plug and play, which allows users to exchange a SoftBench-supplied tool with
one of their preference, has guided SoftBench’s architecture and the development of standards in the CASE industry. Text
editors and configuration management systems are the most common tools that users customize.

Support a Distributed Computing Environment. This goal required that all tool execution, data, and display should be designed
for a network environment. This objective was based on the scenario of a software development team using a group of
workstations with varying capabilities and shared project files on a central server. Providing distributed computing support
in SoftBench has not only allowed it to work well in this scenario, but also has provided additional benefit in the ability to
target computers and embedded systems that cannot support an application development environment. The biggest
SoftBench customers make use of this capability.

Leverage Existing Tools. The reason for this objective was to protect customers’ investments in software development tools by
allowing these tools to fit into the SoftBench environment without modifying source code. This has worked well for
lightweight integrations, but most customers have decided that the increased value of a deeper integration is worth adding a
simple module to their source code.

Support Software Development Teams. Originally SoftBench included integration with RCS (Revision Control System) and
SCCS (Source Code Control System) configuration management tools and support for accessing shared project files. In
SoftBench 5.0, the SoftBench configuration management product SoftBench CM was added. SoftBench CM is based on the
history management server, which has been used internally in HP for many years. SoftBench CM provides global source code
management for software development teams whose members can be located anywhere around the world.

Support Multiple Work Styles. Software engineers do a number of different tasks during the course of a project, including
design, prototyping, construction, defect fixing, and maintenance. Each of these tasks requires a different emphasis of the
software development tools. For example, construction makes extensive use of the editor and builder, defect fixing is
centered in the debugger, and maintenance starts with the static analyzer. Each of the tools is accessible from the others,
which allows a task to have quick access to multiple tools or to transition between tasks.

http://www.hp.com/hpj/97feb/fe97a5.htm


Article 1 February 1997 Hewlett-Packard Journal      3

Support Other Life Cycle Tools. SoftBench supports the integration of other tools that support the software life cycle, including
documentation, test, defect tracking, and design tools. Most of the third-party tools integrated with SoftBench are in these
categories.

Build on Standards. SoftBench has always been built on standards, such as the UNIX operating system, NFS and ARPA
networking, the X Window System, and the OSF/Motif appearance and behavior. In SoftBench 5.0 we added integration with
the Common Desktop Environment (CDE),2 including CDE drag and drop.

New Technology in SoftBench
In the years since the first release of SoftBench, the breadth of tool support and functionality of the tools has increased
significantly. This section briefly describes some of these additions.

Static Database. In SoftBench 3.0 a new object-oriented static database was placed under SoftBench’s static analyzer. Earlier
versions of the static analyzer could only analyze 30,000 to 40,000 lines of source code before reaching capacity limitations.
The new static database does not have capacity limitations and performance is acceptable for up to about one million lines
of source code.

In addition to the capacity and performance improvements, the object model of the new static database makes it more
flexible for adding language types and queries. The SoftBench static analysis database is described in Article 3.

Rule Engine. In SoftBench 5.0 a rule engine was implemented as part of the SoftBench CodeAdvisor product. A rule is
implemented as a C++ class, which can access information in the static database and any other information available to it.
The rules are run by the rule engine, which is integrated into the SoftBench program builder.3

A set of C++ coding rules is included in SoftBench 5.0. These rules check for dangerous coding practices, which are the ones
that would create memory leaks or have unanticipated side effects. Information and examples needed to create rules are
included in the SoftBench software developer’s kit.

The SoftBench CodeAdvisor is described in Article 4.

New Languages. The first release of SoftBench supported the C language. C++ SoftBench was added in 1991. C++
enhancements were made to the SoftBench tools and a C++-specific tool, the C++ Developer, was added. The C++
Developer was designed to be a training tool. It had a graphic display of the class inheritance hierarchy, and the user could
add or delete classes and inheritance relationships from the graph. It could also automatically fix common coding problems
before they were caught by the compiler. In SoftBench 5.0, the C++ Developer was replaced by the graphic editing
functionality in the SoftBench static analyzer’s class graph.

COBOL SoftBench3 was added to the product family in 1994. It provides encapsulations of most of the MicroFocus COBOL
tools.* The SoftBench development environment makes it easier for users to transition to the UNIX operating system from
mainframe development environments. COBOL SoftBench provides a common development environment for C, C++ , and
COBOL. This is especially helpful when debugging an application that is a combination of COBOL and C or C++.
MicroFocus’ Animator and SoftBench program debugger pass control of the application between themselves as the
application moves between modules implemented in different languages.

SoftBench CM. The SoftBench configuration management product was introduced in 1995. It is based on the history
management server, an internal tool that has been used for most of HP’s software development.

SoftBench CM is a scalable configuration management tool that offers efficient code management capabilities for team
members and work groups, including those who are geographically dispersed in distant locations. Based on a client/server
architecture that is designed to allow access to multiple local or remote servers, SoftBench CM is easily accessed from any
of the SoftBench tools (see Fig. 3).

SoftBench CM can manage different versions of any type of file. Many of our customers use SoftBench CM to version
nonsoftware files, including project documents and bitmaps. A PC user interface has been developed that allows users in
mixed UNIX and PC environments to create versions of their PC-based files along with their UNIX-based files.

Graph Views. In the original version of SoftBench there were only textual interfaces. In SoftBench 3.0, graphical interfaces
were added to many of the SoftBench tools, including the dependency graph browser in the program builder, the static graph
browser in the static analyzer, and the data graph browser in the program debugger.

In SoftBench 4.0 the underlying graph library was replaced by an implementation based on a third-party graphics library
called ILOG Views. This implementation is much faster and will handle a lot more nodes than the old implementation. The
static graph browser was replaced with three specialized graphs for files, functions, and classes.

In SoftBench 5.0, graphical editing capability was added to the SoftBench static analyzer’s class graph and its name was
changed to the class editor. Article 2 describes the C++ SoftBench class editor.

* The COBOL SoftBench family is based on HP MF COBOL, HP’s implementation of MicroFocus COBOL, which is based on technology from MicroFocus, Ltd.

http://www.hp.com/hpj/97feb/fe97a3.htm
http://www.hp.com/hpj/97feb/fe97a4.htm
http://www.hp.com/hpj/97feb/fe97a2.htm


Article 1 February 1997 Hewlett-Packard Journal      4

Fig. 3. A SoftBench CM screen.

More Platforms. SoftBench originally supported HP 9000 Series 300 workstations and HP 9000 Series 800 file servers. Support
was added for the HP 9000 Series 400 and Series 700 workstations and HP 9000 Series 800 servers with X terminals. In 1991
SoftBench was released for SunOS and in 1993 support was added for Sun’s Solaris operating system.

DDE Debugger. In SoftBench 4.0, the underlying debugger for SoftBench’s program debugger was changed from xdb to the HP
Distributed Debugging Environment (DDE) from HP’s Massachusetts Language Laboratory. HP DDE’s architecture isolates
most of the debugger from specific information about the target operating system, computer language, user interface, and
debug format. The SoftBench team implemented the SoftBench program debugger user interface on top of HP DDE and
ported the whole thing to the Solaris operating system. This is the only development environment that supports both the
HP-UX* and Solaris operating systems with a common debugger, using the compilers supplied by the system vendors.

ToolBar. SoftBench is a powerful development environment and as the user base has expanded we’ve placed more emphasis
on making it easier to learn and use. Many times users requested tools that were already in SoftBench so we added an iconic
ToolBar to make the available tools visible. The ToolBar supports drag and drop integration with HP VUE and CDE.

Conclusion
When SoftBench was first envisioned, UNIX software development tools consisted of compilers and debuggers, and real
software engineers didn’t use windows. SoftBench was the first integrated application development environment running on
the UNIX operating system.

There wasn’t much to work with then, just RFA (remote file access) and TCP/IP networking and the beginnings of the
X Window System. Motif came along during the development of the first release of SoftBench and NFS came along later.
When HP’s Software Engineering Systems Division (SESD) developed the BMS (broadcast message server) for interprocess
communication and it was included in HP VUE, it changed the capability of desktops for everyone.

Over the years SESD has developed new technology for the challenges brought on by the C++ language and larger
applications. We also added a lot of graphics as the technology became available and workstation performance increased.

In the future, SoftBench will face new challenges associated with developing distributed applications that run in
heterogeneous environments. We can look to the original objectives and architecture for a path that has stood the test of
time.

References
1. Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 6-68.
2. Hewlett-Packard Journal, Vol. 47, no. 2, April 1996, pp. 6-65.



Article 1 February 1997 Hewlett-Packard Journal      5

3. C. Carmichael, “COBOL SoftBench: An Open Integrated CASE Environment,” Hewlett-Packard Journal, Vol. 46,
no. 3, June 1995, pp. 82-85.

4. A. Iyengar, T. Grzesik, V. Ho-Gibson, T. Hoover, and J. Vasta, “An Event-Based, Retargetable Debugger,”
Hewlett-Packard Journal, Vol. 45, no. 3, June 1995, pp. 33-43.

OSF and Motif are trademarks of the Open Software Foundation in the U.S.A. and other countries.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/97feb/fe97a1a.pdf
http://www.hp.com/hpj/97feb/fe97a2.htm
http://www.hp.com/hpj/journal.html


Subarticle 1A February 1997 Hewlett-Packard Journal      1

Applying a Process Improvement Model to

SoftBench 5.0

Software organizations are under market pressure to reduce their cycle time and improve their development processes. The
conventional approach is to work on one, usually at the expense of the other. For SoftBench 5.0 we decided to jump right in and attack
both using a 12-month release cycle and CMM (Capability Maturity Model) level-2 processes.  Using CMM-prescribed project
management processes, we reduced SoftBench 5.0’s cycle time by 35%, improved product usability, and improved our ability to predict
release dates. We also greatly improved the organization’s ability to select, plan, estimate, and track software projects.

Reference 1 describes the software improvement project at our division that put in place the CMM process. Here we briefly summarize
CMM and our approach to using it for SoftBench 5.0.

Business Environment
SoftBench is an integrated application development environment for C, C++, and COBOL running on UNIX systems. It was first released
in 1988. Since then the cycle time (that is, the time between one major release and the next) has varied from 18 to 24 months. In previous
releases of SoftBench, the first part of the project was very unstructured. It typically involved market research, customer visits,
prototyping, and design, but these activities were not well-integrated. At some point we would decide what functionality should make
the release and what functionality would be rescheduled for the next release. A cross-functional team would be put into place to
manage and focus the release. This model provided little control over requirements or schedule.

By the time we started SoftBench 5.0, we had taken important steps to improve our product development process. First, we had a life
cycle in place based on user-centered design. We had piloted elements of the user-centered design process with SoftBench 4.0, but the
life cycle had not been tested on a large-scale project. Second, we had organized into cross-functional business teams, which helped
speed alignment between marketing and R&D by putting a single manager in charge of both functions. And finally, we had just
completed the SoftBench 4.0 test phase on schedule, proving that we had the ability to plan and schedule the latter phases of a project.

To make matters more interesting, our new division manager, who had experience reducing cycle time, improving quality, and improving
predictability using the Software Engineering Institute’s Capability Maturity Model (SEI CMM), challenged us to get to CMM level 3 in
36 months, a process that normally takes two to three years just to go from level-1 to level-2 CMM compliance.

Capability Maturity Model
In 1987 the Software Engineering Institute (SEI), based at Carnegie-Mellon University, published the first version of the Capability
Maturity Model (CMM). The initial intent of the CMM was to provide a process maturity framework that would help developers improve
their software processes.

CMM describes five levels of software process maturity (Fig.1). At the initial process level (level 1) an organization operates without
consistent application of formal procedures or project plans. When things get tight, the level-1 organization always reverts to coding
and testing. At level 2, the repeatable level, controls are established over the way an organization establishes its plans and
commitments. Requirements, plans, and procedures are documented, at least at the project level, which means the process could be
repeated in the future as long as the type of software being developed doesn’t change too much. At the defined level (level 3), the
organization has documented both its management and  engineering processes. This allows the organization to begin to improve the
processes over time. Level 4, the managed level, is where an organization can quantitatively measure its development and management
processes. Finally, at level 5, the optimizing level, the development process operates smoothly, and continuous improvement occurs on
the defined processes established in the previous levels.

For each level of process maturity, CMM describes the related key practices that characterize that level of process maturity.

Each key process area is defined by a set of one or more goals, as well as the specific practices which, if followed, help achieve the
goals. The key process areas and practices are intended to describe what needs to be done to efficiently and predictably develop and
maintain software. The CMM does not attempt to specify how software should be developed and managed, leaving that interpretation to
each organization, based on its culture and experience.

Project Infrastructure
We chose to move to level 3 by adopting CMM level-2 processes immediately on all new projects. SoftBench 5.0 was the first and
largest project to use the new processes and our project infrastructure was designed to support this approach. The key components of
our project infrastructure were: a life cycle based on user-centered design, a Web server connected to our configuration management
system, and a process consultant and a project lead.

The life cycle had been under development for about a year and we had already used it successfully on some parts of the previous
SoftBench release. The life cycle uses a simple waterfall model, augmented with CMM level-2 practices and user-centered design.



Subarticle 1A February 1997 Hewlett-Packard Journal      2

Level 3

Level 2

Level 1

Level 5

Level 4

Initial (Ad Hoc, Chaotic)

Repeatable (Disciplined Process)

� Software Configuration Management
� Software Quality Assurance
� Software Subcontract Management
� Software Project Tracking and Oversight
� Software Project Planning
� Requirements Management

Defined (Standard, Consistent Process)

� Peer Reviews
� Software Product Engineering
� Intergroup Coordination
� Integrated Software Management
� Training Program
� Organization Process Definition
� Organization Process Focus

Managed (Predictable Process)

� Software Quality Management
� Qualitative Process Management

Optimizing (Continually Improving Process)

� Process Change Management
� Technology Change Management
� Defect Prevention

� Managerial Processes
� Technical Processes

Fig. 1. The five layers of the software Capability Maturity Model. As an organization adopts the practices
specified in the model, its software processes should see greater productivity and quality.

CMM level-2 practices ensure that requirements, plans, and schedules are documented, reviewed, and approved by management.
Moreover, level-2 practices ensure that as requirements or designs change, the associated plans and schedules are revisited to make
sure they are still valid.

User-centered design is based on the premise that a product’s success depends on how well the product addresses the needs of the
people who use it. User-centered design does this by involving potential users in key development activities, such as profiling user
characteristics, characterizing goals and tasks, and validating potential product features and design alternatives.

All of our project documents were checked into SoftBench CM, SoftBench’s configuration management system. A Web home page was
created for the SoftBench project, allowing us to retrieve documents from SoftBench CM and display them with a Web browser, such as
Mosaic or Netscape. The home page included a section for each of the SoftBench teams (to point to customer survey data,
requirements, and designs), and sections for product documents, project planning documents, project schedules, and life cycle
guidance. We’ve always checked project documents into our configuration management system, but the addition of the Web browser
really improved the visibility and access to these documents. Fig. 2 shows our Web intranet structure.

The third key component of our project infrastructure was the process consultant and project lead. We had a full-time project lead and a
full-time process consultant focused on the CMM practices, both as part of the formal management team. We also had a half-time
user-centered design consultant from our human factors organization to help us apply the user-centered design techniques. Having
these two individuals share accountability for both process and project management proved to be a major success factor.



Subarticle 1A February 1997 Hewlett-Packard Journal      3

SoftBench CM
Repository

Web Server

UNIX or PC
Browser

SoftBench CM
Client

• Managers
• Developers

• PC Developers
• Process Consultant

Fig. 2. The network configuration that supported the project infrastructure for the development of SoftBench 5.0.

Reference
1. D. Lowe and G. Cox, “Implementing the Capability Maturity Model for Software Development,” Hewlett-Packard Journal, Vol. 47, no. 4,
August 1996.

Bibliography
1. W. S. Humphrey, Managing the Software Process, Addison-Wesley Publishing Company, 1989.

Acknowledgments
Many individuals contributed to the success of SoftBench 5.0 and our SEI initiative. We’d like to specifically acknowledge the following
for their hard work and perseverance: Jack Cooley, Guy Cox, Doug Lowe, Alan Meyer, and Jan Ryles.

Deborah A. Lienhart
Project Manager
Software Engineering Systems Division

Scott Jordan
Process Consultant
Software Engineering Systems Division

http://www.hp.com/hpj/97feb/fe97a1.pdf
http://www.hp.com/hpj/97feb/fe97a2.htm
http://www.hp.com/hpj/journal.html


Article 2 February 1997 Hewlett-Packard Journal      1

The C++ SoftBench Class Editor

The C++ SoftBench class editor adds automatic code generation
capabilities to the class graph of the SoftBench static analyzer.
Novice C++ programmers can concentrate on their software
designs and have the computer handle C++’s esoteric syntax.
Experienced C++ programmers benefit from smart batch editing
functionality and by having the computer quickly generate the
program skeleton.

by Julie B. Wilson

The C++ SoftBench class editor allows the programmer to edit the class constructs in a C++ program using the SoftBench
static analyzer’s graphical interface. Using the class editor, the programmer can create and modify class hierarchies and edit
class components.

Since the class editor is part of the static analyzer, let’s look first at the functionality provided by the static analyzer. The
static analyzer helps the programmer better understand the code. Through static queries, the programmer can understand a
program’s structure, assess the impact of changes, and change the architecture of the code when necessary. The static
analyzer presents a wide variety of information about the code, including information about variables, classes, functions, and
files. Through queries, the programmer can answer questions such as, “What functions and classes call this function?” or
“What code accesses any element of this class?” The results of the queries can be displayed either textually or graphically.
From either display, a simple double click takes the programmer directly to the source code that supports the displayed
information.

To use the static analyzer, the programmer must first generate static information about the application. The default compile
mode in the SoftBench program builder generates the static database (the Static.sadb file). When the programmer builds the
application, the compiler places the static database in the directory in which the programmer compiled the code. All static
queries rely on the information stored in this database.

Benefits of the Class Editor
SoftBench 5.0 adds editing capabilities to the class graph provided by the static analyzer. With the class editor, a novice C++
programmer can concentrate on software design, class hierarchy, data members, and member functions, not on C++ syntax.
After each edit request, the class editor automatically generates the specified C++ code with correct syntax. The class editor
also checks the work and doesn’t let the programmer make typical beginner’s mistakes like using the same class name twice.

Expert C++ programmers also benefit from the class editor. In addition to the program visualization capabilities of the graph,
experts can quickly generate a program skeleton or make changes to an existing program’s structure. Even more useful are
the powerful, static-assisted edits that the class editor supports. Using the class editor, the programmer can change the name
of a class or class member and all the appropriate changes are made in the source code. These changes can span many files.
Because of the underlying static database, if the programmer changes the name of a member function x, the class editor
knows exactly which instances of x are relevant and which instances are not.

Controlling Complexity
Fig. 1 shows an example of a C++ program with the classes and inheritance relationships displayed. The class editor
provides the ability to display many relationships in addition to inheritance, such as friends, containment, and accesses
by members of other classes.

Large C++ applications tend to have many classes and many relationships among the classes. The class editor provides
several features to help control the complexity of what is displayed:

� Filters make it possible to display only the type of data in which the programmer is interested. For example, if
the programmer only wants to see inheritance relationships, all other types of relationships can be filtered so
they are not displayed on the graph.

� The programmer can reduce the complexity of the graph by hiding nodes that are not currently of interest.

� The programmer can add nodes to the graph directly by name or indirectly by querying about relationships
with nodes already displayed on the graph.

� The programmer can expand and contract class nodes to show the data members and member functions in the
node.



Article 2 February 1997 Hewlett-Packard Journal      2

Fig. 1. Class graph with all classes and inheritance relationships.

Fig. 2 shows the same program that was represented in Fig. 1, but this time the visual display has been changed by filtering
out all the classes from library header files. Additionally, two of the nodes have been expanded to show the member
functions.

Fig. 2. Simplified graph with only classes immediately under the programmer’s

control displayed and two nodes expanded to show the member functions.

Changing the Class Hierarchy
Like any editor, the class editor allows the programmer to add, modify, and delete edited objects. For example, the
programmer can add classes, inheritance relationships, member functions, and data members. Once these C++ structures
exist, they can be modified or deleted. For example, the programmer can change an inheritance relationship from public to
private or delete the relationship entirely.



Article 2 February 1997 Hewlett-Packard Journal      3

If the programmer finds it necessary to restructure relationships by removing a class in the middle of an inheritance
structure, the class editor makes the necessary edits to maintain the remaining relationships, as shown in Fig. 3. In this
example, A is the base class of B, and B is the base class of C and D. Because the program architecture has been changed,
the programmer no longer wants the B class. When B is deleted, the class editor automatically maintains the inheritance
relationships so that A becomes the base class of C and D.

A B

C

D

A

C

D
(a) (b)

Fig. 3. If the programmer removes a class in the middle of an inheritance structure,

the class editor makes the necessary edits to maintain the remaining relationships.

(a) Before the B class is deleted. (b) After the B class is deleted.

Recovering from Editing Mistakes
The class editor remembers edit requests so that the programmer can undo them in reverse order. For example, if the
programmer adds a base class relationship and then reconsiders, the Undo menu command on the Edit menu reads Undo Adding
Inheritance.

Keeping the Static Database Up-to-Date
In SoftBench, compilations that produce static information are implemented with two parallel, independent build processes
(see Fig. 4). The standard compiler, a cfront-based compiler, produces the error log and object (.o) files. The –y compiler
option triggers the sbparse command, which is a subset of HP’s ANSI C++ compiler. The sbparse command produces the static
database, Static.sadb.

*.o Files

Compiler

Errors

cc –y

sbparse

Static.sadb

Fig. 4. In SoftBench, compilations that produce static information are implemented with two

parallel, independent build processes. The standard compiler produces the error log and object

(.o) files.  The sbparse command produces the static database, Static.sadb.

The –nocode compiler option tells SoftBench not to run the cfront-based compiler. Since everything that the static analyzer
knows depends on the underlying static database, each class editor edit request needs to update the static database. When
the programmer requests an edit in the class editor, the class editor executes a compile with the –nocode –y compiler options,
updating the static database without checking syntax and without producing .o files.

Using the Class Editor with a SoftBench Text Editor
The class editor saves after every logical edit. For example, if the programmer creates a new class, the underlying source
code file changes when the programmer makes the request, and the class editor sends a FILE-MODIFIED message to let other
tools know that the file changed.

If the programmer has a SoftBench text editor open while working in the class editor, the FILE-MODIFIED message causes the
text editor to refresh the display of the file and the programmer can see the immediate propagation of the new source code.

Fig. 5 shows the sequence of events that occurs when the programmer makes an edit using the class editor:

1. The class editor performs pre-edit checks to make sure that the edit makes sense. Assuming that the request passes the
pre-edit checks, the edit is displayed on the graph.

2. The class editor updates the underlying files that are impacted by the request.

3. The class editor sends a FILE-MODIFIED message to notify other tools that the edit took place.

4. The class editor executes a compile with –nocode –y 
options, which updates the Static.sadb file. 



Article 2 February 1997 Hewlett-Packard Journal      4

Program Editor:
Displayed File(s)

Class Editor:
Displayed Graph

Source
Code File(s) Static.sadb

1

2

3 4

Fig. 5. Sequence of completing a class editor edit. 1  Edit displayed on graph. 2  Files updated. 3  FILE-MODIFIED message

results in redisplay of file in editor. 4  A compile with –nocode –y options updates the database.

If the programmer chooses to make edits in the text editor, the sequence of events is slightly different (see Fig. 6):

1. When the programmer saves the file, the text editor updates the underlying file and sends a FILE-MODIFIED
message.

2. The class editor receives the FILE-MODIFIED message and posts an information dialog box stating Undo disabled due
to external edit. The class editor then erases the undo stack, since the external edits may have made the undo
actions invalid.

3. The code changes in the text editor are not immediately propagated back into the class editor. The
programmer must initiate the action that updates the static database and the graphical display. To update the
static database, the programmer chooses the File: Analyze File Set menu command on the main static analyzer
window. This menu command executes a –nocode –y compile.

4. After updating the static database, the programmer needs to select the Update Graph button in the class editor to
display the code changes made in the text editor.

Program Editor:
Displayed File(s)

Class Editor:
Displayed Graph

Source
Code File(s) Static.sadb

1

2

3

4

Fig. 6. Sequence of updating the class editor after an external edit. 1  Files updated. 2  FILE-MODIFIED message disables the

undo stack. 3  An Analyze File Set menu command triggers a compile that updates the database. 4  An Update Graph command

displays the external edits on the graph.

Working with Configuration Management
Edits in the class editor have the potential to change many files. For example, if the programmer changes the name of
a class, several files may need to change. With the powerful, static-assisted editing, the programmer may not be aware of
which files are changing. Consequently, the programmer can attempt to initiate edits on files that do not have write
permission.

When the class editor runs into a problem with file permissions, it posts a dialog box giving the programmer three choices:

� Let the class editor check out the necessary files. This option is only valid if the files are under configuration
management and available for checkout. The class editor completes the checkout process by sending a
VERSION-CHECK-OUT message.

� Resolve the problem manually, then select Retry on the dialog box.

� Cancel the edit.

Fixing Compile Errors
The class editor does not introduce compile errors when it creates code. However, it is possible for the programmer to
introduce compile errors. For example, the programmer might reference a function before creating it, make a typing error on
a variable name or type when adding a data member, or make a syntax error in the body of a member function. Neither the
class editor nor sbparse catches syntax errors of this type.



Article 2 February 1997 Hewlett-Packard Journal      5

At first this model may appear surprising, but it actually works to the user’s advantage. When the programmer uses
a traditional text editor, code is not always compilable as it is being developed. The programmer may frequently create code
objects out of order, mentally keeping track of what still needs to be done. The class editor functions in much the same way.
If it detected every compilation problem, work would soon grind to a halt. Instead, the programmer can complete the code
development tasks and let the compiler catch the syntax errors later.

Preserving White Space and Comments when Editing
The algorithm for completing an edit allows the class editor to preserve spaces, tabs, and comments in the code being
edited. When the programmer specifies an edit, the static database provides the class editor with the specific positions in the
source that need to be edited. The source code is then searched for “landmarks” to ensure that the right part of the code is
being changed. Only minimal additions, substitutions, and deletions are done to the source file. For example, when a class is
renamed, each reference is replaced by the new name, leaving any user-added comments or white space intact.

When more complicated things are changed, like the return type of a function, several consecutive tokens may be replaced
with new text. In this case, any comments that are between the old tokens for that type are lost.

Troubleshooting
The error Unable to update the database is fairly common. It tends to occur with existing code that has compile errors, and it
usually indicates a missing include file. To avoid this error, the programmer should make sure that existing code compiles
without errors before starting to use the class editor.

Much more rarely, timing problems are encountered. When the programmer requests an edit, the first step is to make the edit
visible on the graph, and the last step is to update the database (see previous discussion under “Using the Class Editor with a
SoftBench Text Editor”). Because the class editor allows the programmer to begin the next edit as soon as the previous edit
is visible on the graph, it is possible to experience a race condition. If the database is not yet up-to-date when the class editor
attempts to complete its pre-edit checks for the next edit, the programmer will get an error message. For example, if the
programmer creates a class, then attempts to add a member to the class before the create class edit is complete, the error
Class <class name> not found will be issued. To resolve this error, the programmer should wait a moment and try again.

Conclusion
The static analyzer and the class editor together offer the C++ programmer a powerful program visualization and editing
tool. The editing capabilities of the class editor facilitate program construction and editing. The code generation capabilities
of the class editor facilitate program correctness and consistency. Code generated by the class editor is syntactically correct
and consistently formatted. When the programmer makes a mistake using the the class editor, one or more edits can easily
be backed out using the Edit: Undo menu command.

The filtering capabilities of the static analyzer allow the programmer to control the complexity of what is displayed and to
conceal irrelevant details easily. The visualization capabilities of the static analyzer aid program comprehension. The
programmer can choose to investigate many types of relationships in the code, and can easily access the underlying source
code when more detail is needed.

Acknowledgments
The author wishes to acknowledge Wade Satterfield, the R&D engineer who developed the class editor, for his technical
input and review of this article. The author also wishes to thank Carolyn Beiser, Jack Walicki, and Jerry Boortz for reviewing
this paper and providing helpful suggestions.

Reference
1. F. Wales, “Theme 4 Discussion Report,” User-Centered Requirements for Software Engineering Environments,

Springer-Verlag, Nato Scientific Affairs Division, 1994, pp. 335-341. This article presents tasks to be facilitated.
The tasks mentioned in the conclusion above are based on this task list.

http://www.hp.com/hpj/97feb/fe97a3.htm
http://www.hp.com/hpj/journal.html


Article 3 February 1997 Hewlett-Packard Journal      1

The SoftBench Static Analysis Database

The static analysis database supports the SoftBench static
analyzer and the C++, C, FORTRAN, Pascal, and Ada programming
languages. The underlying data is isolated by a compiler interface
and a tool interface.

by Robert C. Bethke

The SoftBench static analysis database, Static.sadb, is a repository for generic program semantic information. Within
SoftBench the database supports the static analyzer along with graphical editing and rule-based program checking. The
data model is relatively general and currently supports C++, C, FORTRAN, Pascal, and Ada.

The database also serves as a product and can be customized by the user. Its compiler interface and tool interface are
documented and allow the integration of other languages and compilers and the use of custom analysis tools.

The Data Model
The underlying data is a set of persistent C++ objects. These objects serve to model the semantics of the program. The
underlying persistent objects are isolated by the compiler interface and the tool interface. The isolation has important
implications for allowing a variety of compiler integrations and provides flexibility in changing the underlying data
management without affecting either the compilers or the tools.

Many of the persistent objects are language-generic (language-insensitive) and are intended to model all similar constructs.
For example, a Struct object is used to model C structures and Pascal records. A Function object is used to model functions and
procedures in all languages. In some cases, it is necessary to have language-specific objects because the semantics are too
specific to apply to other languages. Examples of language-specific objects are C++ Class objects and Ada Module objects.

Each persistent object is assigned a unique object identifier known as a handle. Given an object’s handle, it is possible
to query the object by means of methods for relevant information such as its name, list of references, and so on. All
associations among the persistent objects are maintained by these handles. For example, the association from a Variable
object to its typedef object is maintained by the Variable’s having the handle of its typedef as an attribute. One-to-many
associations are maintained as a set of handles. For example, a File object will have a set of handles to associate all other
source files included by it.

To illustrate associations, consider the following C code:

typedef struct S {int x; int y;} SType;
Stype var;

The associations among the semantic objects in this code fragment are shown in Fig. 1.

Variable var Typedef SType

Tag S Struct

Has Type

Has Type

Has Type

Fig. 1. Associations among semantic objects for the C code example given in the text.

Container objects are used to model scoping and binding and to organize the semantic objects for efficient updating and
navigation. Each container has a set of handles for all objects contained in it and each object contained has the handle of its
container. Examples of container objects are Files, Functions, and Classes. A File contains the program constructs defined in that
source file, a Function contains its parameters and blocks, and a Class contains its members. For example, Fig. 2 shows the
object containment for the following C++ class definition:



Article 3 February 1997 Hewlett-Packard Journal      2

Class cls {
   public:
      cls (int x) {mem=x;}
   private:
      int mem;
};

Class cls

FunctionMember cls::cls

DataMember cls::mem

Parameter x

Fig. 2. Object containment for an example C++ class definition.

The Semantic Objects
The following is a partial list of the semantic objects stored in the database.

SymbolTable. The global SymbolTable is a container that serves as the root of navigation in the database. Its entries are all
globally scoped semantic objects and Files in the database. There is only one global SymbolTable per database.

File. A File is a container that contains all semantic objects that are defined in a specific source file. Attributes of a File are its
name, a language kind, and a set of include and included by associations with other Files.

Module. A Module is a container that contains all semantic objects that are defined within an Ada module. A Module must be
contained within a File or within another Module. Attributes of a Module are its name and a set of imported associations with
other Modules.

RefList. A RefList is an array of references that are associated with named objects in the database. Attributes of a RefList are the
corresponding referent (the File in which the references originate) and the number of references in the list.

Macro. A Macro is a language-generic object for representing a preprocessor or language macro. Attributes of a Macro are its
name and a set of RefLists.

Identifier. An Identifier is a language-generic object for representing a named symbol. This object is mostly used by weaker
(scan-based) parsers that do not intend to distinguish certain categories of objects. Attributes of an Identifier are its name and
a set of RefLists.

Label. A Label is a language-generic object for representing statement labels. Attributes of a Label are its name, an enclosing
Block or Module, and a set of RefLists.

Variable. A Variable is a language-generic object for representing variables. Attributes of a Variable are its name and type, an
enclosing Block or File, and a set of RefLists.

Function. A Function is a language-generic object for representing functions and procedures. Attributes of a Function are its
name, a return type, a set of Parameters, an outer Block, a container (the enclosing File, Module, or Block), and a set of RefLists.

Parameter. A Parameter is a language-generic object for representing function parameters. Attributes of a Parameter are its name
and type, an enclosing Function, and a set of RefLists.

Block. A Block is a container for representing a function block. Attributes of a Block are its begin and end line numbers, the File
in which it is contained, and an enclosing Block or Function.

Typedef. A Typedef is a language-generic object for representing named program types. Attributes of a Typedef are its name, the
type it denotes, an enclosing File or Block, and a set of RefLists.

Tag. A Tag is a language-generic object for representing aggregate (Enum, Struct, Class, and ClassTemplate) type names. Attributes
of a Tag are its name, the aggregate it denotes, an enclosing File or Block, and a set of RefLists.



Article 3 February 1997 Hewlett-Packard Journal      3

Enum. An Enum is a language-generic object for representing enumerated types. Attributes of an Enum are its corresponding Tag
and a set of EnumMembers. RefLists to the enumeration are on the corresponding Tag.

EnumMember. An EnumMember is a language-generic object for representing enumeration constants. Attributes of an EnumMember
are its name, an enclosing Enum, an ordinal value, and a set of RefLists.

Struct. A Struct is a language-generic object for representing program structures, records, and unions. Attributes of a Struct are
its corresponding Tag and a set of DataMembers. RefLists to the Struct are on the corresponding Tag.

DataMember. A DataMember is a language-generic object for representing fields of a structure, union, class, or record. Attributes
of a DataMember are its name and type, an enclosing Struct or Class, and a set of RefLists.

Class. A Class is a C++-specific object for representing C++ classes. Attributes of a Class are its corresponding Tag, a set of
DataMembers, a set of FunctionMembers, a set of base and derived Classes, a set of friend Classes and friend Functions, a set of
nested Classes within, and the ClassTemplate of which it is an instance. RefLists to the Class are on the corresponding Tag.

FunctionMember. A FunctionMember is a C++-specific object for representing C++ class member functions. Attributes of a
FunctionMember are its name, a return type, a set of Parameters, an enclosing Class, the File in which it is defined, an outer Block,
and a set of RefLists.

ClassTemplate. A ClassTemplate is a C++-specific object for representing class templates. Attributes of a ClassTemplate are its
corresponding Tag, a set of DataMembers, a set of FunctionMembers, a set of FunctionTemplate members, a set of TemplateArguments,
a set of base and derived Classes and ClassTemplates, a set of friends, and a set of Class instances. RefLists to the ClassTemplate are
on the corresponding Tag.

FunctionTemplate. A FunctionTemplate is a C++-specific object for representing function templates. Attributes of a FunctionTemplate
are its name, a set of TemplateArguments, and a set of Function or FunctionMember instances.

The Compiler Interface
From the compiler perspective the database can be thought of as a persistent symbol table for a set of source files such as a
library or an application. The compiler sees the contents of only one compilation unit and emits information accordingly, but
the database creates only objects that are not yet in the database. The database creates and merges all the program objects
as the source files are compiled.

Compilation may result in objects being removed. Persistent objects are removed when they are old or are contained in
objects that are old. For example, when a file has been modified and is being recompiled, the File is old and its contents are
removed from the database. The compilation will proceed and instantiate the appropriate new objects contained in the File.

The database is incremental to the file level. If one source file in an application or library is changed, the compilation will
result in the removal and repopulation of objects in that File. After the compilation the database is again consistent and
available for queries from a reader.

The compiler interface is procedural in style and is intended to be easily added to most compilers. The interface is
structured around the creation of objects and the establishment of associations and containment relationships among the
objects.

The Tool Interface
From the tool perspective the database supports concurrency control to the extent of allowing multiple readers and one
writer. A reader can have up to 256 databases open for reading. The reader must structure queries within a transaction and is
allowed to leave the database open while it is being modified by a writer. The reader is notified of a change to the database
via a callback when starting a transaction. Nested transactions are not supported.

The tool interface is a class library that reflects the underlying object model. Each persistent object is presented as a handle.
Internally, each handle is mapped into a pointer to the real persistent object. All information pertaining to the object is made
available via methods. Navigation among objects is supported by methods that return a handle or an iterator over a set of
handles. For example, the following is a partial definition of the Symbol class.

class Symbol {
  public:
    Symbol(PerHandle symbolhandle);
    Symbol();
    ~Symbol();

    // Name, kind and attributes of the symbol.
    char *Name() const;
    PerKind Kind() const;
    Attributes Attrib() const;



Article 3 February 1997 Hewlett-Packard Journal      4

    // Enclosing scopes of the symbol.
    DBboolean EnclosingFile(File &file) const;
    DBboolean EnclosingBlock(Block &block)
      const;

    // Iterator to all reference lists for this
    // Symbol.
    ITERATOR(RefList) RefLists() const;

  protected:
    PerHandle SymbolHandle;
};

The global SymbolTable is the root for all navigation. This object provides navigation and hashed searching to all globally
scoped symbols. The following code segment illustrates how to access all globally scoped functions from the global
SymbolTable.

SymbolTable symtab;
// Construct an iterator over all global 
// functions. 
ITERATOR(Function) functionitr = 
   symtab.GlobalFunctions(); 
// For each function print its name and if the 
// function is defined, the file in which it is 
// defined.
ITERATE_BEGIN(functionitr) {
    File sourcefile;
    printf(”%s”, functionitr.Name()); 
    if (functionitr.EnclosingFile(sourcefile))
        printf(” contained in %s”, 
              sourcefile.Name());
    printf(”\n”); 
} ITERATE_END(functionitr)

All of the relationships among the semantic objects are first-level. Hence, many of the interesting queries and rules will
require a transitive closure* of the relationships. For example, consider the following function, which prints all the derived
classes of a given class.

void derivedclasses(Class theclass) { 
    // Iterate over immediate derived classes of
    // theclass. 
    ATTRIBUTE_ITERATOR(Tag) tagaitr = 
              cls.DerivedClasses(); 
    ITERATE_BEGIN(tagaitr) { 
       // Print the class name. 
       printf(”%s\n”, tagaitr.Name()); 
       Class dercls; 
       // Navigate to the actual derived class 
       // and recursively call derivedclasses to
       // print its derived classes. 
       if (tagaitr.ClassType(dercls)) 
           derivedclasses(dercls); 
    } ITERATE_END(tagaitr) 
}

API Products
The database APIs (application programming interfaces) are available in the SoftBench 4.0 product and are used internally
by the SoftBench parsers and tools. They are also used by some customers for compiler integrations. The tool interface is
the fundamental component of the software developer’s toolkit for user-defined rules.

* The transitive closure for a particular object under a particular transitive binary relationship is the set of objects descended from the particular object by
way of the particular relationship. For example, if B is derived from A and C is derived from B, the transitive closure for the object A under the relationship
“derived from” is the set of objects whose elements are B and C.



Article 3 February 1997 Hewlett-Packard Journal      5

http://www.hp.com/hpj/97feb/fe97a4.htm
http://www.hp.com/hpj/journal.html


Article 4 February 1997 Hewlett-Packard Journal      1

CodeAdvisor: Rule-Based C++ Defect

Detection Using a Static Database

C++ SoftBench CodeAdvisor is an automated error detection tool
for the C++ language. It uses detailed semantic information
available in the SoftBench static database to detect high-level
problems not typically found by compilers. This paper describes
CodeAdvisor and identifies the advantages of static over run-time
error checking.

by Timothy J. Duesing and John R. Diamant

C++ is a powerful successor to the C language that has all of C’s features plus a lot more, including constructors,
destructors, function overloading, references, inlines, and others. With this added power come more options to manage,
more ways to do things right, and inevitably, more ways to go wrong. C++ compilers can find syntactical errors, but they do
not find errors involving constructs that are legal yet unlikely to be what the programmer intended. Often, problems of this
nature are left to be found during testing or by the end user. Attempts to find these defects at an earlier and less expensive
stage of development sometimes take the form of code inspections or walkthroughs. While careful walkthroughs can find
some of these errors, formal inspections are time-consuming and so expensive that they are usually only applied to small
pieces of the code.

Since C++’s introduction in the early 1980s, a large body of experience with the language has accumulated and many works
have appeared that describe common pitfalls in the language and how to avoid them.1-5 While some of these problems can
be quite subtle, some of them are also straightforward enough that a program can be created to detect them automatically,6

as long as that program can be supplied with sufficiently detailed information about the code’s structure. The SoftBench
static database (see Article 3), with its semantic information, provides an opportunity to create a tool that can do just that.
This article is about such a tool: C++ SoftBench CodeAdvisor.

CodeAdvisor: An Automated Rule Checker
CodeAdvisor distills its knowledge of what are likely to be coding errors as a set of rules that alert the user to problems
such as calling virtual functions from constructors, mixing iostream routines with stdio routines, local variables hiding data
members, and so on. Each rule is a set of instructions that queries the static database for the information of interest and then
performs the logic to test whether that potential error condition is present. When it detects a rule violation, CodeAdvisor
displays the violation’s location (file, line number) in an error browser that lets the user navigate quickly and easily to the
problem site and use an editor to correct it. Online help is available to present more explanation of the violation, possible
ways to correct the problem, references for further information, and when appropriate, exceptions to the rule.

CodeAdvisor detects rule violations by performing static analysis of the code using the SoftBench static database. Static
analysis differs from the dynamic or run-time analysis done by debuggers, branch analyzers, and some performance tools in
that all of the available code is examined. Dynamic analysis examines only code that is actually executed and cannot find
defects in branches that are never taken. Also, dynamic analysis requires that the code be far enough along so that it can be
actually executed. Static analysis, on the other hand, can be performed as soon as the code compiles, even if the code cannot
yet successfully run.

Because it is automated, CodeAdvisor will tirelessly check all the rules it knows against all of the code. This is practical only
for relatively small pieces of code during inspections done by hand. Unlike a human code reviewer, CodeAdvisor never gets
so tired or bored that it misses a rule violation it’s been programmed to find. While CodeAdvisor cannot replace inspections
completely (there will always be problems that cannot be detected automatically), it can be a good complement to
traditional code inspections, freeing developers to focus on higher-level problems by weeding out the detectable problems
first.

Example Rule: Members Hidden by Local Variables or Parameters
Let’s look at an example of one of the rules CodeAdvisor implements and examine how it uses the static database to find a
rule violation. Consider the small program in Fig. 1. The class Vehicle with its two-line member function SetSpeed looks simple
enough. The constructor for Vehicle sets the initial speed to zero, so we would expect to get a current speed of zero at the
start of the program and we do. We might also expect that, after calling SetSpeed with a delta of 50, we would then get a
current speed of 50. However, if we actually compile and run the program we find that we still get zero! Why? The problem is
that a data member is hidden by a function parameter with the same name. In SetSpeed we’ve made an unlucky choice when

http://www.hp.com/hpj/97feb/fe97a3.htm


Article 4 February 1997 Hewlett-Packard Journal      2

we named the parameter speed, since there is a data member of the same name in the class Vehicle. When speed is modified in
SetSpeed, the compiler modifies the parameter rather than the data member. The compiler will not complain since we have
given it unambiguous instructions, which it will follow perfectly. If we had chosen any other name for our local variable, the
example would work as expected.

#include <iostream.h>

class Vehicle { 
private:
     int speed;
public: 
     int CurrentSpeed() const { return speed; } 
     void SetSpeed(int newspeed, int delta = 0); 
     Vehicle() { speed = 0; } 
};

// SetSpeed takes an absolute speed plus a 
// delta. If absolute speed is zero, use 
// current speed. Other parameters should be 0 
// (2nd one defaults to 0) 
void Vehicle::SetSpeed(int speed, int delta)
{ 
     if (!speed) speed = CurrentSpeed(); 
     speed = speed + delta;
};

main() 
{ 
     Vehicle car; 
     cout << ”Car’s initial speed = ” 
          << car.CurrentSpeed()
          << endl;
     car.SetSpeed(0,50); 
     cout << ”Car’s new speed = ” 
          << car.CurrentSpeed() 
          << endl; 
}

Fig. 1. An example of a CodeAdvisor rule violation: members hidden by local variables or parameters.

Even in this simple setting, an error like this can be difficult to spot at a glance. In a more complex and perhaps more
realistic situation, this problem might never be found in a code inspection. If we bury a few subtle defects like this in a few
megabytes of code we might find that they won’t be found until actual execution exposes them as bugs.

Detecting an Error Using the Static Database
The problem, then, is how to find these kinds of defects before the user does. The context in which speed is used is what’s
important here. Using speed as a parameter in most cases is perfectly valid. The only case we need to worry about is when a
parameter or local variable is used within the scope of a member function and it has the same name as a data member of that
class. This is where the static database is needed to make this kind of rule checking possible. The static database contains,
among many other things, information about what objects are global and local within a scope, and it understands what
objects are member functions and what the associated parameter list is.

One way to create a rule to detect this particular error is to first query the database to find all the classes in a program. Once
we have all the classes, we can query the database for all the member functions of those classes. Then we can examine each
function’s parameters and local variables looking for any members local to the class or inherited public or protected with the
same name. If we find a match, we report a rule violation and output the file and line numbers of the offending symbols.

Of course, to make the rule robust, there are still a few little details that need to be considered in implementing the above
algorithm. For instance, to be general, when we query the database for classes, we’ll want to find class templates as well,
and if we find any, we’ll want to consider only the templates themselves and not their instances. Also, when we search for
member functions of these classes we’ll want to skip any compiler-generated functions that the C++ compiler may have
created by default. We may also want to handle the cases where a symbol hides a member function as well as a data member.
All the information needed to handle these details is available in the static database.



Article 4 February 1997 Hewlett-Packard Journal      3

Exceptions to the Rule
The types of problems for which CodeAdvisor is targeted are not the obvious or even the obscure abuses of the C++
language. Compilers are fully capable of finding these types of errors. Rather, CodeAdvisor attempts to identify a more
subtle kind of problem that might be characterized as constructs that experience tells us are almost certainly not what the
programmer intended, even though they are fully legal within the language. We must include the word ‘‘almost,’’ however,
because occasionally some of the most unlikely constructs are in fact what the programmer intended. Deciding with
certainty whether or not a suspicious construct will turn out to be a real problem may sometimes require knowledge that
cannot be determined by a practical amount (or sometimes any amount!) of analysis, static or run-time.

To illustrate this, consider, for example, the CodeAdvisor rule that detects classes that are passed as a value parameter to a
function. This may become a problem when the class passed is a derived class and virtual functions of that class are called
within that function. This is because calls to that class’s virtual functions will call the base class’s versions, not the derived
class’s versions. The above conditions are easy enough to check for with the static database, but they alone do not guarantee
an error condition. If the function is never passed a derived class instance, no problem will occur. In some special cases,
static analysis might be able to detect this additional condition but in other cases involving complex conditional branching,
detection would be impractical or impossible. Run-time analysis also might be able to detect this condition in special cases,
but in cases of less than 100% branch coverage or conditional branching determined by many combinations of possible
external data, detection again would be impractical. In this particular example, CodeAdvisor will report the rule violation
even with imperfect information because even when the problem only potentially exists, it can cause a serious problem for
later code maintainers. Each rule, however, must be evaluated on its own merits to consider the possible nuisance of false
positives.

In this sense, the rules can be regarded as heuristic—that is, good but not perfect guesses that a given piece of code is a
genuine error. Fig. 2 illustrates the nature of the problem when a rule has imperfect knowledge of the code. The area where
a heuristic rule is satisfied still contains cases where no real error exists. To report these cases when there is a reasonable
amount of uncertainty as to their validity would be to bombard the user with unwanted ‘‘noise’’ that would distract from
other real problems.

Reported Real Errors

Heuristic Satisfied

Undetected
Errors

Real Errors

False
Positives

Fig. 2. The problem of finding errors with imperfect information.

We have reduced the noise factor in CodeAdvisor by adopting a philosophy of ‘‘no false positives’’ when implementing a rule.
That is, when imperfect information prevents knowing with certainty if a construct causes a problem in the current setting,
the code is given the benefit of the doubt unless there is also a serious potential for a future maintenance problem. In
addition, for those occasional cases where a suspicious construct is reported but still deemed acceptable by the user,
CodeAdvisor provides a filtering mechanism to allow the user to suppress the display of particular violations.

Summary
CodeAdvisor uses the information available in the SoftBench static database to implement a deeper level of error detection
than is available with current compilers. CodeAdvisor’s static analysis has advantages over run-time analysis because all of
the available code is analyzed instead of only the branches that are actually executed. An automated rule checking tool like
CodeAdvisor can contribute to the code development process at an early stage, where the cost of defect repair is less
expensive. CodeAdvisor complements traditional code inspection and testing, allowing developers to focus on the
higher-level problems by weeding out the detectable problems first.

References
1. S. Myers, Effective C++, Addison-Wesley, 1992.
2. T. Cargill, C++ Programming Style, Addison-Wesley, 1992.
3. M.A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley, 1990.
4. Taligent Corp., Well-Mannered Object-Oriented Design in C++, Addison-Wesley, 1994.



Article 4 February 1997 Hewlett-Packard Journal      4

5. Programming in C++, Rules and Recommendations, Translated from Swedish by Joseph Supanich, Ellemtel
Telecommunication Systems Laboratories, 1990-1992.

6. S. Meyers and M. Lejter, “Automatic Detection of C++ Programming Errors: Initial Thoughts on a lint++,”
Proceedings of the Usenix Association C++ Conference, 1991.

http://www.hp.com/hpj/97feb/fe97a5.htm
http://www.hp.com/hpj/journal.html


Article 5 February 1997 Hewlett-Packard Journal      1

Using SoftBench to Integrate

Heterogeneous Software Development

Environments

Migrating from mainframe-based computing to client/server-based
computing can result in a heterogeneous collection of machines
that do not interoperate, forcing software developers to deal with
unfamiliar system commands and systems that cannot share data.
A SoftBench control daemon is described that enables developers
to integrate heterogeneous computing systems into efficient, tightly
coupled software development environments with consistent,
easy-to-use graphical user interfaces across all machines.

by Stephen A. Williams

Many companies today are migrating from mainframe-based computing environments to client/server-based technologies
using various workstations and PCs. They are attracted to the client/server architecture because of industry claims of
benefits like increased efficiency, lower operating costs, and less reliance on a particular vendor.

Often, however, the result is a heterogeneous collection of machines that do not interoperate well. Because the operating
systems on the disparate machines all come with their own sets of tools, software developers must learn a new set of
commands for each system that they use. In addition, developers must deal with the inconsistencies that arise when
applications available on one system are not available on another and when data cannot be shared between machines
because the different toolsets cannot communicate.

To solve these problems, the advanced system development and integration division of Science Applications International
Corporation (SAIC) uses Hewlett-Packard’s SoftBench product to integrate its customers’ diverse systems into efficient,
tightly coupled software development environments with consistent, easy-to-use graphical user interfaces. This article
discusses why and how SAIC uses SoftBench to solve its customers’ multiplatform software development problems. The
article details some of the common pitfalls encountered when developing software in an open systems environment,
explains how SAIC deploys SoftBench to integrate such systems, and concludes by discussing the benefits of such an
integration.

Open Systems
Companies are adopting client/server-based open systems for a wide variety of reasons. Some companies hope to increase
computing efficiency by distributing the data and processing load, thereby providing faster response times and quicker
access to system resources. Other companies want to lower their development costs by using lower-cost, yet faster
workstations and PCs. Yet others must move to open systems to remain compatible with their customers and keep a
competitive edge in the marketplace.

While migrations to open systems can provide great dividends, they can also become more unwieldy than the systems they
replace. Many client/server topologies contain a wide variety of machines, such as high-end servers running the UNIX

operating system, PCs running Microsoft Windows, and legacy systems running proprietary operating systems. In addition,
even similar machines will often run different operating systems (e.g., variations of the UNIX operating system) or even
different versions of the same operating system. The resulting heterogeneous collection of machines makes it difficult to
create an efficient and cooperative software development environment. Fig. 1 depicts an example of such an environment.
Note that most applications cannot communicate with each other.

Although many open system standards exist to help such diverse collections of machines communicate, most of them are
low-level network standards that simply provide a way for bits to be transferred between machines. The open systems
community still lacks accepted high-level application standards that would allow disparate programs to interact with each
other. Thus, applications from different vendors often cannot interoperate, which greatly restricts the benefits of
implementing many client/server solutions. This lack of communication also means that data must be replicated across
machines, wasting resources and increasing the risk of data inconsistency.



Article 5 February 1997 Hewlett-Packard Journal      2

Compiler

Debugger
E-Mail

E-Mail

Memory Leak
Detector

Complexity
Analyzer

UnixWare

Defect
Tracking

Database

Configuration
Management

VMS

HP-UX

HP-UX

Fig. 1. An example of a heterogeneous collection of machines in which the applications

on different systems cannot cooperate or communicate with each other.

Another problem with developing in a multiplatform, multivendor environment is the lack of consistency in the user
interface to the systems. Because developers must deal with multiple operating systems, they have to learn how to operate
each system’s interface individually. This can be an especially formidable task considering the arcane commands used by
some operating systems and the differences between file systems across platforms (i.e., hierarchical versus fixed depth,
/ versus \, etc.). Developers must also remember which system contains each application that they need, where it is located,
and how to start it.

Furthermore, developers in a heterogeneous environment must learn how to operate the different user interfaces for each
of the applications that they use. While some applications now have elegant graphical user interfaces, the look and feel of
each system are often different. Also, many applications do not have graphical user interfaces at all, which requires that
developers memorize command-line options to these programs. These inconsistencies not only lengthen a developer’s
learning curve, but also make developers less efficient when switching between applications.

Integration
Previous issues of the HP Journal have described how to use SoftBench to integrate disparate applications running under
the HP-UX* and Solaris operating systems.1,2,3 In this article we will concentrate on how to use SoftBench to integrate
applications running on other platforms. The key to accomplishing this integration is to port SoftBench’s subprocess control
daemon (SPCD) to each operating system that is to be integrated. The SPCD provides a standard, robust, and secure method
of executing subprocesses on remote systems. This is accomplished by providing an API through which encapsulations can
interact with the SPCD over a network socket connection. Through the API, encapsulations can instruct the SPCD to start or
stop a subprocess on the remote machine, send input to a subprocess, and receive output from a subprocess.

Thus, once the SPCD is ported to a given system, encapsulations† can be written for applications running on that system as
easily as if the applications were running on an HP-UX or Solaris system running SoftBench.

Why SoftBench? There are several reasons why SAIC chose to use SoftBench to integrate heterogeneous software
development environments. First, the standard SoftBench environment comes with a rich set of state-of-the-art software
development tools, all of which use a consistent, easy-to-use graphical user interface. In addition, SoftBench provides a
graphical user interface to the operating system (via the SoftBench development manager) which hides many of the
intricacies of the operating system and its file system.

Another advantage to using SoftBench is the framework for interapplication communication it provides through SoftBench’s
broadcast message server. This framework allows applications with no direct knowledge of each other to communicate and
therefore interoperate. This functionality allows one application to be substituted for another with no adverse effects on
other applications. It also allows new applications to be integrated into the environment without making any changes to
existing applications.

Probably the most important reason to use SoftBench is its extensibility. Through the use of the encapsulator library, which
provides functions to communicate with the SPCDs, the SoftBench environment can be extended to include non-SoftBench
applications. In addition, the encapsulated applications can run on any operating system to which the SPCD has been ported.

† A SoftBench encapsulation means integrating a tool into the HP tool integration architecture.



Article 5 February 1997 Hewlett-Packard Journal      3

Using SoftBench for Integration. Given the above reasons for using SoftBench to integrate a heterogeneous software
development environment, how does one go about implementing such an integration? The first step is to install SoftBench
on at least one HP or Sun workstation. Note that it is not necessary to place such a workstation on each developer’s desk
because SoftBench can be run remotely using the X Window System and developers can use any machine running an
X server. This includes DOS, Windows, MacOS, and most versions of the UNIX operating system. Thus, a company
implementing a SoftBench environment can probably leverage much of its existing hardware inventory to keep costs down.

Next, the SPCD needs to be ported to each operating system in the environment that contains applications that need to be
integrated. Of course, there’s no need to port to HP-UX or Solaris since SoftBench (and thus the SPCD) already runs on
those systems. As discussed earlier, the SPCD provides a standard method that SoftBench applications can use to execute
subprocesses on remote systems. Although other methods of remote subprocess control could be used in such an
integration, the SPCD is probably the best choice because it is specifically designed to work with SoftBench. Also, note that
there is no need to port all of SoftBench since only the SPCD is needed for remote subprocess control.

Because the source code for the SPCD is not freely available, the SPCD can only be ported by Hewlett-Packard or its
authorized agents. SAIC has been granted such authority in the past to complete SoftBench integrations for a number of
its customers. The operating systems to which SAIC has already completed the SPCD ports include:

� UNIXWare

� MP-RAS

� VMS

� Pyramid DC/OSx

� Stratus FTX

� Windows NT

� Tandem Guardian

� Tandem OSS.

A port to MVS was started but not completed.

As can be seen from the diversity of the operating systems to which the SPCD has already been ported, the SPCD code is
quite portable. However, there are a number of requirements that the SPCD makes of a target operating system. The list
below details the basic requirements that SAIC uses to determine the level of effort in an SPCD port:

� An ANSI C compiler

� A C++ compiler

� A Berkeley-type TCP/IP sockets capability

� The capability for a process to start up and communicate with several subprocesses like the UNIX fork() and
pipe() system calls

� The capability for a process to detect input from several sources at the same time like the UNIX select() system
call

� An interface that allows system calls to be made from C

� A way to set the environment of a controlled process like the UNIX getenv() system call

� Functionality similar to the UNIX inetd server

� Network File System (NFS) capability.

Note that the SPCD has been ported to environments that do not have fork(), select(), the inetd server, or NFS. While these items
do make the port much simpler, it is still possible to port to environments that do not include all of the items listed above.

Once the SPCD has been ported to the appropriate operating systems, custom encapsulations must be written for each of the
applications to be integrated into the SoftBench environment. Each encapsulation’s job is to act as an intermediary between
a non-SoftBench application and the SoftBench environment, making it look like the application is a fully integrated
SoftBench tool (see Fig. 2). Performing this job entails a number of responsibilities, such as starting the application to be
integrated, establishing a connection to the SoftBench environment, and sending the appropriate notification messages to
SoftBench whenever the encapsulated application performs an action about which another tool might want to know.
Furthermore, the encapsulation must listen for messages requesting a service of the encapsulated application and then
instruct the application to perform the requested task.

To simplify the process of writing an encapsulation, SoftBench comes with an encapsulator library that provides an
easy-to-use API to the SoftBench environment. The encapsulator library provides functions to:

� Send and receive SoftBench messages through the BMS

� Control remote subprocesses using the SPCD

� Create graphical user interfaces that are consistent with other SoftBench tools.



Article 5 February 1997 Hewlett-Packard Journal      4

SoftBench
BMS

SoftBench
Tool

Encapsulation

SoftBench
Tool

SPCD

Legacy
Application

Legacy SystemHP-UX

BMS
SPCD

Broadcast Message Server
SoftBench Subprocess Control Daemon

Fig. 2. The organization of software components after SoftBench is set up. The SPCD has been ported to a legacy system,

and an encapsulation has been written for each legacy application to be integrated in the SoftBench environment.

Because the encapsulator library has only been ported to the HP-UX and Solaris operating systems, encapsulations that link
with encapsulator routines must run on a machine using HP-UX or Solaris. While the encapsulator library could be ported to
other operating systems, this is usually unnecessary since an encapsulation can use the SPCD to execute a subprocess on a
remote host as easily as on a local host. This is one of the major advantages gained by porting the SPCD to all operating
systems in the environment.

A few other limiting factors must be taken into account when writing encapsulations. First, it is difficult, if not impossible,
to integrate applications that have no command-line interface. For example, if the only way to interact with an application is
through a graphical user interface, then an encapsulation of that application must emulate mouse movements and button
clicks to communicate with it. This is generally not a feasible option.

Another factor to consider when writing encapsulations is the granularity of the information provided by the application
to be encapsulated. If the application does not give some sort of notification for each action that it takes, then the
encapsulation will be limited in its interpretation of what the application is doing. For more information about the limitations
of the encapsulator library see reference 1.

Once the necessary encapsulations have been written, the next step in integrating an application into a heterogeneous
computing environment is to extend the SoftBench environment so that all of the desired applications are seamlessly
integrated into it. This is accomplished by modifying the SoftBench configuration file softinit to include references to each
of the new encapsulations (see Fig. 3). This action informs SoftBench about the new functionality that is now available
through the encapsulations and how to access those encapsulations.

Modifications to softinit can also be used to inform SoftBench to replace existing tools with new encapsulations. For instance,
the standard e-mail tool that comes with SoftBench could be replaced with an encapsulation of a local e-mail application.
SAIC has used this capability to replace the debugger that comes with SoftBench with an encapsulation of the GNU
debugger, gdb. This provides SAIC’s customers with a fully integrated debugger that runs on any machine that gdb supports,
which includes most modern operating systems.

To further integrate a development environment, the SoftBench message connector can be used to automate repetitive tasks
and enforce software development processes. The message connector works by monitoring the BMS for a desired message
and then executing a user-supplied routine whenever that message is seen. For example, suppose company policy requires
that a complexity analysis program be run on all source code when it is checked into the configuration manager. To meet
that requirement with no human intervention, the message connector could be configured to monitor the BMS for a message
from the configuration management tool indicating that a file has just been checked in. Then, it would run the analysis
program on that file, perhaps e-mailing the results back to the developer who checked in the file.

For software development processes that require more intricate interactions than the message connector can provide,
SAIC’s SynerVision product can be used. It provides a nextgeneration process management environment that helps teams
manage the software engineering process, including such tasks as writing new software, debugging programs, maintaining
existing systems, and porting to new platforms. Also, because SynerVision fully supports the SoftBench environment, no new
encapsulations need to be written for it.

Note that the steps described above for integrating a heterogeneous software development environment with SoftBench do
not need to be implemented all at once. Instead, the built-in extensibility of SoftBench allows one to take a progressive
approach wherein applications are encapsulated one at a time and added to the environment as they are completed. Such an
approach can smooth the migration path from a legacy system to an open system by eliminating the need for a complete
switchover to the new technology.



Article 5 February 1997 Hewlett-Packard Journal      5

#
# $HOME/.softinit –– user customizations to
# SoftBench initialization

#
# Editor

#
# To use ”vi” as the editor, uncomment the
# following line
EDIT   TOOL  NET   *  %Local% softvisrv –scope
net -types %Types%

# To use ”softedit” as the editor, uncomment the
#following line
#EDIT  TOOL  NET   * %Local% softeditsrv –scope
net –types %Types%

# To use ”emacs” as the editor, uncomment the
#following line
#EDIT TOOL NET     * %Local% emacs

#
# Configuration Management
#

DM   TOOL  DIR     * teflon softdm –host %Host%
–dir %Directory% –file %File%

# To use ”RCS” as the CM tool, uncomment the 
# following line
CM   TOOL NET * teflon softrcs –scope net

# To use ”SCCS” as the CM tool, uncomment the
# following line
#CM  TOOL NET * spike softsccs

#
# Debugger
#
# To use GDB as the debugger, uncomment the
# following line
#DEBUG TOOL FILE * teflon /usr3/stevew/
#DebugBackends/softgdb/softgdb –d 255 –1 /tmp/
softgdb.log –host %Host% –dir %Directory% –file
%File%

#
# Tandem stuff
#

# To startup RSHELLSRV in debugging mode, 
#  uncomment the following line
#RSHELLSRV TOOL HOST * teflon /usr/rshellsrv/
#rshellsrv –d 255 
1 /tmp/log.rshellsrv.%Host%.$USER –host %Host%

# To startup RSHELLSRV in standard mode, 
#uncomment the following line
RSHELLSRV TOOL HOST * teflon /usr/rshellsrv/
rshellsrv –host %Host%

Fig. 3. A SoftBench configuration file softinit. This file contains references to each new encapsulation.



Article 5 February 1997 Hewlett-Packard Journal      6

Benefits of Integration with SoftBench
By extending SoftBench as described above, a heterogeneous collection of computing systems with disparate, incompatible
tools can be transformed into an efficient, tightly coupled software development environment with consistent, easy-to-use
graphical user interfaces across all machines. Fig. 4 shows the result of an example integration.

Encapsulation

HP-UX

SoftBench
Compiler

SoftBench
Debugger

SoftBench
E-Mail

SoftBench
E-Mail

Memory Leak
Detector

SPCD

SoftBench
BMS Encapsulation

Encapsulation

SPCD
Complexity

Analyzer

Defect
Tracking

SPCD EncapsulationDatabase

Encapsulation
Configuration
Management

UnixWare

HP-UX

VMS

Encapsulation

Encapsulation

Fig. 4. An example of an integration over several platforms. Note that there is an encapsulation for each application.

Certainly, one of the biggest advantages of integrating with SoftBench is the realization of a standard, consistent user
interface to all tools on all machines. This consistent interface minimizes the learning curve for developers by reducing
the number of commands that they need to learn to use the environment. It also improves the efficiency of developers
by simplifying their interactions with both applications and operating systems and by providing a means for data sharing
between applications (e.g., cut and paste, drag and drop, etc.). In environments with legacy systems where developers have
been using text-based terminals, the benefit of this graphical user interface can be enormous.

As discussed earlier, all SoftBench applications use the X Window System to display their graphical user interfaces. This
provides the advantage that the complete software development environment is always available from any machine that has
an X server. Furthermore, the environment looks and works exactly the same no matter what machine a developer uses,
from a Macintosh PowerBook laptop running an X server to an HP 9000 workstation running HP VUE.

An environment integrated with SoftBench also provides the advantage that remote data access is transparent to the user.
By using NFS and the automounter, SoftBench automatically retrieves data from remote machines without any user
intervention. Developers only need to specify which machine contains the desired data, and SoftBench handles the rest.
This benefits developers because they do not have to copy files back and forth between machines or know the intricacies
of networked file systems.

Similarly, SoftBench provides the advantage that remote program execution is transparent to the user. By using SPCD,
SoftBench can execute applications on remote machines without developer intervention. Developers no longer need to log
into various machines to run the tools they need because SoftBench provides a centralized control center that places all
tools at their fingertips. This lets the developer concentrate on the task at hand instead of worrying about logins, passwords,
pathnames, and so on.

By providing transparent access to both data and applications, SoftBench allows resources to be spread across a distributed
client/server topology without introducing complexity into its use. Developers get a unified view of their environment
whether it contains one machine or one hundred, whether all their data is centralized on one server or distributed across



Article 5 February 1997 Hewlett-Packard Journal      7

many systems. In addition, machines can be added to (or removed from) the environment without impacting developers
simply by modifying SoftBench to use (or stop using) the given machines.

Another advantage of integrating with SoftBench is the rich set of state-of-the-art software development tools that come with
SoftBench. These tools benefit developers by simplifying and expediting the edit-compile-debug cycle. The tools automate
processes such as checking source files into and out of configuration management, building executables, and displaying
errors found by the compiler. In addition, the tools can provide a graphical view of source code, allowing a developer to
quickly learn unfamiliar code or find errors in program flow.

Furthermore, by encapsulating local and third-party applications in the environment, developers will have access to those
applications as easily as if they were standard SoftBench tools. This benefits developers because they do not have to know
on which host the applications exist or how to start them. Instead, the developer can start an application simply by selecting
it from the list of applications in the SoftBench tool manager. In fact, by customizing the environment with the message
connector, many applications can be started automatically.

As discussed earlier, the message connector and SynerVision can save developers time and effort by automating repetitive
tasks and by enforcing software development policies such as ensuring that required tasks always occur and that those tasks
are executed in the proper order. By enforcing well-defined policies, SoftBench can help increase the efficiency of the
software development process and improve the quality of the finished product.

Conclusion
Software development in a heterogeneous computing environment can be a difficult proposition. Varying hardware and
software platforms, incompatible tools, and inconsistent user interfaces are just a few of the trouble spots. However,
Hewlett-Packard’s SoftBench product can be used to solve these problems by providing a standard upon which to integrate
the disparate components of such an environment. By porting SoftBench’s SPCD to each operating system involved, all
machines become equally and consistently accessible from SoftBench. Then, by encapsulating the applications on those
systems, the applications become fully integrated SoftBench tools capable of interacting with other SoftBench tools.

Acknowledgements
SAIC’s success in deploying SoftBench to solve its customers’ problems is the result of a collaboration of exceptional talent
at both SAIC and Hewlett-Packard. I would especially like to thank Vern Badham, Winn Rindfleisch, and Dave Romaine for
their invaluable contributions to these projects and for their help in writing this article. I would also like to thank Curt Smith
for inviting me to join his team at SAIC and John Dobyns for allowing me to continue my encapsulation work after I left
SAIC. Lastly, I extend special thanks to Dick Demaine and the Software Engineering Systems Division of Hewlett-Packard
for making SoftBench possible and for their continuing support of SAIC’s work.

References
1. B.D. Fromme, “HP Encapsulator: Bridging the Generation Gap,” Hewlett-Packard Journal, Vol. 41, no. 3, June

1990, pp. 59-68.
2. C. Gerety, “A New Generation of Software Development Tools,” Hewlett-Packard Journal, Vol. 41, no. 3, June

1990, pp. 48-58.
3. J.J. Courant, “SoftBench Message Connector: Customizing Software Development Tool Interactions,”

Hewlett-Packard Journal, Vol. 45, no. 3, June 1994, pp. 34-39. 

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX  is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

http://www.hp.com/hpj/97feb/fe97a6.htm
http://www.hp.com/hpj/journal.html


Article 6 February 1997 Hewlett-Packard Journal      1

The Supply Chain Approach to Planning

and Procurement Management

The supply chain approach models stochastic events influencing a
manufacturing organization’s shipment and inventory performance
in the same way that a mechanical engineer models tolerance
buildup in a new product design. The objectives are to minimize
on-hand inventory and optimize supplier response times.

by Gregory A. Kruger

This paper describes the processes and equations behind a reengineering effort begun in 1995 in the planning and
procurement organizations of the Hewlett-Packard Colorado Springs Division. The project was known as the supply chain

project. Its objectives were to provide the planning and procurement organizations with a methodology for setting the best
possible plans, procuring the appropriate amount of material to support those plans, and making up-front business decisions
on the costs of inventory versus supplier response time (SRT),* service level to SRT objectives, future demand uncertainty,
part lead times, and part delivery uncertainty. The statistical modeling assumptions, equations, and equation derivations are
documented here.

Basic Situation
Consider a factory building some arbitrary product to meet anticipated customer demand. Since future demand is always
an uncertainty, planning and procurement must wrestle with the task of setting plans at the right level and procuring the
appropriate material. The organization strives to run the factory between two equally unattractive scenarios: not enough
inventory and long SRTs, or excessive inventory but meeting SRT goals. In fact, more than one organization has found itself
with the worst of both worlds—huge inventories and poor SRTs.

The supply chain project focused on characterizing the various stochastic events influencing a manufacturing organization’s
shipment and inventory performance, modeling them analogously to the way a mechanical engineer would model a
tolerance buildup in a new product design.

Problem Formulation
For a particular product, a factory will incur some actual demand each week, that is, it will incur demand Di in week i, for i
� 1, 2, 3, ... From a planning and procurement perspective, the problem is that looking into the future the Di are unknown.

Let Pi be the plan (or forecast) for week i in the future. Now for each week, the actual demand can be expressed as the
planned demand plus some error: Di � Pi � ei.

The MRP (material requirements planning) system, running at intervals of R weeks, evaluates whether to order more
material to cover anticipated demand, and if the decision is to order, how much to order. Given a lead time of L weeks to
take delivery of an order placed to a supplier now for some part, the material in the supply pipeline must cover real demand
for the next L�R weeks. By supply pipeline we mean the quantity of the part already on hand at the factory plus the quantity
in orders placed to the supplier and due for delivery over the next L weeks.

For simplicity, assume for the remainder of this discussion that we are dealing with a part unique to one product and used
only once in building the product. We will remove these constraints later but for now it will help to focus on the key
concepts.

Define X to be the unknown but actual demand the factory will experience for this part over the next L�R weeks:

X � �
L�R

i�1

Di � �
L�R

i�1

�Pi � ei�.

In statistical terminology, X is a random variable, that is, we cannot say with certainty the value it will take next, but with
some assumptions about the nature of the planning errors (ei), the distribution of X can be characterized. Specifically, we
will make the assumption that the ei are distributed according to the Gaussian (normal) distribution with mean zero and

* In standard terminology, SRT stands for “supplier response time.” In this case, a better term would be “shipment response time,” because the supplier
being referred to is HP and not one of HP’s suppliers. In this paper, we use the standard terminology for SRT, but the word “supplier” in all other contexts
means one of HP’s suppliers.



Article 6 February 1997 Hewlett-Packard Journal      2

variance �2 (see Fig. 1). The assumption that the mean of the ei is zero says that our plans are unbiased, that is, the factory is
not consistently overestimating or underestimating future demand. Thus, the average of the differences between the plan
and the actual demand over a reasonable period of time would be about zero. The normal distribution is symmetric, so we
are saying there is equal probability in any week of actual demand being above or below plan. The variance measures how
large the planning errors can get in either direction from zero.

3� Mean 0 3�

Fig. 1. Assumed normal distribution of planning errors.

We would like to know both the expected value of X and its variance. Knowing these two values will form the basis for the
ultimate decision rules for replenishment order sizes placed to the supplier for our part.

We will use the following notation: E(x) represents the expected value of the random variable x, and V(x) represents the
variance of the random variable x.

Before launching into the derivation of the expected value of the real demand over the next L�R weeks, note that L 
itself is a random variable. When an order is placed with the supplier, delivery does not always come exactly on the
acknowledgment date. There is some uncertainty associated with when the replenishment order will arrive. Like the
planning errors, we will assume that the delivery errors are normally distributed about zero. Thus:

E(X) � E��L�R

i�1

�Pi� ei�� � �
E(L)�R

i�1

E�Pi� ei�

� �
�L�R

i�1

�E�Pi� � E�ei�� � �
�L�R

i�1

Pi.

The result will be precisely correct when the Pi are stationary (that is, the plan is a constant run rate) and will serve as an
approximation when the Pi are nonstationary.

Determining the variance of X is more involved because the limit of the summation, L�R, is a random variable. The
derivation can be be found in Appendix I. The result is:

V(X) � ��L � R��2
e � P2

L�R�
2
L.

where �e is the standard deviation of the errors ei, �L is the standard deviation of L, and PL�R is the average of the plan over

L � R weeks.

The standard deviation of demand is the square root of this result. In practice, we estimate the standard deviation of demand
by:

�
^

X � �L� R�s2
DE � P2

L�Rs2
LE

� ,

where L is the average lead time from the supplier of this part, R is the review period, s2
DE is the variance of the difference

between the weekly plan and the actual weekly demand, and s2
LE is the variance of the difference between the date

requested and the date received. Lee, Billington, and Carter1 give the same result when modeling the demand at a
distribution center within a supply chain.

Knowing the variance of the demand uncertainty over L�R weeks, we can develop a decision rule for determining the
amount of inventory to carry to meet the actual demand the desired percent of the time.



Article 6 February 1997 Hewlett-Packard Journal      3

We define the order-up-to level as:

Order-up-to Level� �
L�R

i�1

Pi� Z1–��
^

X,

where Z1–� �is the standard normal value corresponding to a probability � of stocking out. Z1–��
^

X is called the safety stock.

We define the inventory position as follows:

Inventory Position � On-Hand Quantity
� On-Order Quantity
� Back-Ordered Quantity.

The purchase order size decision rule each R weeks for replenishment of this part becomes:

New Order Quantity � Order-up-to Level
� Inventory Position.

We are simply trying to keep the order-up-to level of material in the supply pipeline over the next L�R weeks, knowing we
have a probability � of stocking out.

As you can see, the basic idea behind the statistical calculation of safety stock is straightforward. In practice, a number of
complicating factors must be accounted for before we can make this technology operational. The list of issues includes:

� The chosen frame of reference for defining and measuring future demand uncertainty

� The impact of SRT objectives on inventory requirements

� The translation from part service level to finished product service level

� Appropriate estimates for demand and supply uncertainty upon which to base the safety stock calculations

� Purchasing constraints when buying from suppliers

� The hidden effect of review period on service level performance

� The definition of service level.

There are significant business outcomes from managing inventory with the statistical calculation of safety stock. These
include the ability to:

� Predict average on-hand inventory and the range over which physical inventory can be expected to vary

� Trade off service level and inventory

� Trade off SRT and inventory

� Plot order aging curves so that you can see how long customers may have to wait when stock-outs do occur

� Measure the impact of reducing lead times, forecasting error, and delivery uncertainty

� Measure the impact of changing review periods and minimum order quantities to the supplier

� Stabilize the orders placed to suppliers so that they are not being subjected to undue uncertainties

� Reduce procurement overhead required for manipulating orders.

Turning off the Production Plan Overdrive
Many manufacturing planning organizations have traditionally handled the uncertainties of future demand by intentionally
putting a near-term overdrive into the production plan (see Fig. 2). By driving the material requirements plan (MRP) higher
than expected orders, a buffer of additional material is brought into the factory to guard against the inevitable differences
between forecast and actual demand. In effect, this overdrive, or front loading, functions as safety stock, although it is never
called that by the materials system.

While this practice has helped many factories meet shipment demands, it has also caused frustrations with nonoptimal
inventory levels. Biasing the build plan high across all products does not consider that it is unlikely that all of the products
will be simultaneously above their respective forecasts. Therefore, inventories on parts common to several products tend to
be excessive. Also, this approach treats all parts the same regardless of part lead times, rather than allocating safety stock
inventory based upon each part’s procurement lead time. The factory can easily end up with inventories too high on short
lead time parts and too low on longer lead time parts. Finally, the practice of building a front-end overdrive into the plan can
lead to conflict between the procurement and production planning departments. Wanting to ensure sufficient material to
meet customer demand, the planning department’s natural desire is to add a comfortable pad to the production plan.
Procurement, aware of the built-in overdrive in the plan and under pressure to reduce inventories, may elect to second-guess
the MRP system and order fewer parts than suggested. Should planning become aware that the intended safety pad is not
really there, it can lead to an escalating battle between the two organizations.



Article 6 February 1997 Hewlett-Packard Journal      4

Time

“Front Loading”
(Functions as Safety Stock)

M
at

er
ia

l R
eq

ui
re

m
en

ts
 P

la
n 

(M
RP

)

Fig. 2. Many manufacturing planning organizations handle the uncertainties of future demand

by intentionally driving the material requirements plan (MRP) higher than expected orders.

Frame of Reference
Fundamental to the use of the statistical safety stock methods outlined in this paper is how one chooses to measure demand
uncertainty, or in other words, what is the point of reference. The two alternative views are (see Fig. 3):

� Demand uncertainty is the difference between part consumption in the factory and planned consumption.

� Demand uncertainty is the difference between real-time customer demand and the forecast.

Measuring demand variation here addresses the
problem of how much material should be ordered
to support the uncertainty of actual customer
demand about the order forecast.

Measuring demand variation here addresses
the problem of how much material should be
ordered to support the production plan.

Factory Production

Variability of Actual versus
Planned Part Consumption

Variability of Actual versus
Forecast Orders

Fig. 3. Frames of reference for measuring demand uncertainty. These two measures can be very

different in a factory dedicated to steady build rates according to a build plan. In a factory

fluctuating its production is response to actual orders, these two measures are more alike.

Consider using part consumption within the factory versus build plan as the frame of reference. The function of statistical
safety stocks here is to provide confidence that material is available to support the production plan. A factory with a
steady-rate build plan would carry relatively little safety stock because there are only small fluctuations in actual part
consumption. Of course, actual order fulfillment performance would depend upon finished goods inventory and the
appropriateness of the plan. In this environment, the organization’s SRT objective has no direct bearing on the safety stock
calculations. The factors influencing the estimate of demand uncertainty and hence safety stock are fluctuations in actual
builds from the planned build, part yield loss, and part use for reasons other than production.

If the point of reference calls for measuring demand uncertainty as the deviation between the forecast and real-time
incoming customer orders, safety stock becomes a tool to provide sufficient material to meet customer demand. This factory
is not running steady-state production but rather building what is required. Now the SRT objective should be included in the
safety stock calculations since production does not have to build exactly to real-time demand if the SRT objective is not
zero. From this perspective, statistical safety stocks, projected on-hand inventory, SRT, and service levels are all tied
together, giving a picture of the investments necessary to handle marketplace uncertainty and still achieve order fulfillment
goals.

In choosing between these two frames of reference for the definition of demand uncertainty it comes down to an analysis of
factory complexity and timing. If factory cycle times are relatively short so that production is not far removed from customer
orders, then demand uncertainty can be measured as real-time orders versus forecast. However, if factory cycle times are
long so that production timing is well-removed from incoming orders, then demand uncertainty would best be measured as
part consumption versus build plan.



Article 6 February 1997 Hewlett-Packard Journal      5

SRT in Safety Stock Calculations
Appendix IV documents the mathematics for incorporating SRT objectives into the safety stock calculations. As has been
discussed, using the SRT mathematics would be appropriate when measuring demand uncertainty as deviations of real-time
customer orders from forecast. It is critical, however, that we understand how production cycle times affect the factory’s
actual SRT performance.

As stated in Appendix IV, if factory cycle time is considered to be zero, the SRT mathematics ensures that material sufficient
to match customer orders will arrive no later than the desired number of weeks after the customer’s order. Clearly, time
must be allocated to allow the factory to build and test the completed product. In this paper, this production time is not the
cycle time for building one unit but for building a week’s worth of demand.

Care must be taken when using the SRT mathematics. Consider that the practice of booking customer orders inside the SRT
window will place demands on material earlier than expected from the mathematical model given in Appendix IV. In
practice, one should be conservative and use perhaps no more than half of the stated SRT as input to the safety stock model.

Part versus Product Service Level
The statistical mathematics behind the safety stock calculations are actually ensuring a service level for parts availability
and not for completed product availability. This is true regardless of whether the chosen frame of reference for measuring
demand uncertainty is part-level consumption or product-level orders. Since production needs a complete set of parts to
build the product the question arises as to what the appropriate part service level should be to support the organization’s
product service level goals. Unfortunately, there is not a simple algebraic solution to this problem.

The exact answer is subject to the interdependencies among the probabilities of stocking out of any of the individual parts in
the bill of materials. If we assume that the probabilities of stocking out of different parts are statistically independent, then
the situation looks bleak indeed. For example, if we have a 99% chance of having each of 100 parts needed to build a finished
product, independence would suggest only a 0.99100 � 36.6% chance of having all the parts. Clearly the chance of stocking
out of one part is not totally independent of stocking out of another. For example, if customer demand is below plan there is
less chance of stocking out of any of the parts required. Just as clearly, there is not total dependence among parts. One
supplier may be late on delivery, causing a stock-out on one part number while there are adequate supplies of other parts on
the bill of materials. In the example mentioned, the truth about product service level lies between the two extremes, that is,
somewhere between 0.99100 and 0.99.

As an operational rule of thumb, individual part service levels should be kept at 99% or greater. Of course, the procurement
organization may choose to run inexpensive parts at a 99.9% or even higher service level so as never to run out. Then the
service level on expensive parts can be lowered such that the factory gets the highest return on its inventory dollar. For
example, a factory may run a critical, expensive part at a 95% service level while maintaining a 99.9% service level on
cheaper components to achieve a product level goal of a 95% service level to the SRT objective.

Parts Common to Multiple Products
In the problem formulation section it was assumed that we were dealing with a part unique to a single product and used only
once to build that product. First, recognize that the situation in which a part is unique to a single product, but happens to be
used more than once to build the product, is trivial. If the product uses a part k times then the forecasted part demand is
simply k times the forecast for the product. Similarly, the standard deviation of the forecast error for the part is simply k
times the standard deviation of the forecast error for the product.

The more interesting situation arises when a part is common to multiple products. We will look at two alternative
approaches to handling common parts, the second method being superior to the first. In the first approach, we will assume
that the forecasting errors for the products using the common part are independent of one another. Since the total
forecasting error for the part can be written as the sum of the forecasting errors for each of the products using the part, the
standard deviation of the part forecasting uncertainty can be easily determined.

Consider a part used in j products and used ki times in product i, where i � 1, 2, ..., j. Let DE represent the forecasting or
demand error. Then:

DEpart � k1DEproduct1 � k2DEproduct2 � k3DEproduct3 

������� �� ... � kjDEproductj

�
2
DEpart� k2

1�
2
DEproduct1� k2

2�
2
DEproduct2

� k2
3�

2
DEproduct3� ...� k2

j �
2
DEproductj.

The big problem with this approach is the assumption of independence of forecasting errors among all the products using
the part. If, for example, when one product is over its forecast there is a tendency for one or more of the others to be over
their forecasts, the variance calculated as given here will underestimate the true variability in part demand uncertainty.



Article 6 February 1997 Hewlett-Packard Journal      6

The second approach to estimating forecasting uncertainty for common parts is to explode product-level forecasts into
part-level forecasts and product-level customer demand into part-level demand and measure the demand uncertainty directly
at the part level. For a part common to j products we simply measure the forecast error once as the difference between the
part forecast and actual part demand instead of measuring the forecast errors for the individual products and algebraically
combining them as before. Any covariances between product forecasting uncertainties will be picked up in the direct
measurement of the part-level forecasting errors. Clearly, this is the preferred approach to estimating part demand
uncertainty, since it avoids making the assumption of forecast error independence among products using the part.

Estimation of Demand and Part Delivery Uncertainty
The whole approach to safety stocks and inventory management outlined here is dependent upon the basic premise behind
any statistical sampling theory—namely, that future events can be modeled by a sample of past events. Future demand
uncertainty is assumed to behave like past demand uncertainty. Future delivery uncertainty is assumed to behave like the
supplier’s historical track record. This raises two issues when estimating the critical inputs to the safety stock equations:
robust estimation and business judgment. Both of these issues are extremely dependent upon the chosen frame of reference,
that is, whether we are measuring real-time customer demand or part-level consumption on the factory floor.

From a sample size perspective we would like to have as much data as possible to estimate both demand and delivery
uncertainty. However, in a rapidly changing business climate we may distrust data older than, say, six months or so. If I am
measuring demand uncertainty as the deviations between real-time customer orders and the forecast, do I want to filter
certain events so they do not influence the standard deviation of demand uncertainty and hence safety stocks? It may be
good business practice not to allow big deals to inflate the standard deviation of demand uncertainty if those customers
are willing to negotiate SRT. In statistical jargon, we want our estimates going into the safety stock equation to be robust
to outliers. Naturally, if the demand uncertainty is measured as part consumption on the factory floor versus planned
consumption, data filtering is not an issue. It is possible that an unusual event affecting parts delivery from a supplier may
be best filtered from the data so that the factory is not holding inventory to guard against supply variability that is artificially
inflated.

A common situation is the introduction of a new product. Suppose the chosen point of reference is measuring demand
uncertainty as real-time customer orders versus forecast. How do we manage a new product introduction? A viable option
is to use collective business judgment to set the demand uncertainty even though there is technically a sample size of zero
before introduction. Prior product introductions or a stated business objective of being able to handle demand falling within
��� of the plan during the early sales months can be used to establish safety stocks. In fact, the organization can compare
the inventory costs associated with different assumptions about the nature of the demand volatility. Estimates of average
inventory investment versus assumed demand uncertainty obtained from the statistical models can help the business team
select an introduction strategy.

Effect of Minimum Buy Quantities and Desired Delivery Intervals
In most cases, there are constraints on the order sizes we place to our suppliers, such that replenishment orders are not
exactly the difference between the theoretical order-up-to level and the inventory position. These constraints may be driven
by the supplier in the form of minimum buy quantities or ourselves in the form of economic order quantities or desired
delivery frequencies. The net effect of all such constraints on order sizes is to reduce the periods of exposure to stock-outs.

For example, suppose the factory’s plans predict needing 100 units of some part per week. Further suppose that the ordering
constraint is that we order 1000 units at a time determined by either the supplier’s minimum or our economic order quantity.
This order quantity represents ten weeks of anticipated demand. Once the shipment of parts arrives from the supplier, there
is virtually no chance of stocking out for several weeks until just before the arrival of the next shipment. Given this
observation we see that safety stock requirements actually decrease as purchase quantity constraints increase (see
Appendix V).

Although safety stocks decrease, average on-hand inventory and the standard deviation of on-hand inventory both increase.
See Appendix III for formula derivations of the average and the standard deviation of on-hand inventory.

Effect of Review Period
Analysis of the equation for the standard deviation of demand uncertainty given above shows that as the review period R
increases, �X increases, thereby driving up safety stock. This makes sense because the safety stock is there to provide the
desired confidence of making it through R weeks without a stock-out. However, note that the service level metric itself is
changing. For R�1, the service level gives the probability of making it through each week without a stock-out. For R�2,
the service level gives the probability of making it through two weeks, for R�3, three weeks, and so on. Increasing review
period therefore has an effect similar to that of minimum buy quantities. When operating at longer review periods, purchase
quantities to the supplier are larger, since we are procuring to cover R weeks of future demand and not just one week of
future demand. To keep the average weekly service level at the desired goal, safety stock would actually have to be throttled
back as the review period increases because of less frequent periods of exposure.

http://www.hp.com/hpj/97feb/fe97a6e.pdf
http://www.hp.com/hpj/97feb/fe97a6c.pdf


Article 6 February 1997 Hewlett-Packard Journal      7

Service Level Metric
Throughout this paper, service level has been defined as the probability of not stocking out over a period of time, usually on
a weekly basis. There is another commonly used service level metric called the line item fill rate (LIFR). With the LIFR the
issue is not whether stock-outs occur but rather whether there is at least the desired percentage of the required items
available. For example, suppose in a week of factory production, demand for a part is 100 units but there are only 95
available. Measured in terms of LIFR, the service level is 95%.

Proponents of LIFR argue that the metric gives appropriate credit for having at least some of what is required, whereas the
probability of stock-out metric counts a week in which there was 95% of the required quantity of a particular part as a
stock-out.

When calculating safety stocks to a LIFR metric rather than multiplying the standard deviation of demand over the lead time
plus the review period by a standard normal value, solve for k in the following approximation formula:2

LIFRgoal � 1 �
�X
�D

e��0.92�1.19k�0.37k2�.

where �D is the average weekly demand. Then the safety stock is k�X.

Inventory versus Service Level Exchange Curves
A useful graphical output from the statistical inventory mathematics is the inventory versus service level exchange curve as
shown in Fig. 4.

2000

1750

1500

1250

1000

750

500

Av
er

ag
e 

In
ve

nt
or

y

99.99997.59592.59087.585
Service Level (%)

Fig. 4. Average inventory as a function of service level.

Such graphs demonstrate the nonlinear relationship between increasing inventory and service level given the constraints on
the factory. The curve represents the operating objective. (Johnson and Davis3 refer to this curve as the “efficient frontier.”)
By comparing historical inventory and service levels to the performance levels possible as indicated in Fig. 4, a factory can
gauge how much room it has for improvement. In addition, procurement can determine where on the curve they should be
operating based upon their cost for expediting orders. As can be seen in Fig. 4, a factory operating in the 90% service level
range would get a lot of leverage from inventory money invested to move them to 95% service. However, moving from 95% to
99% service level requires more money and moving from 99% to 99.9% requires more yet. By comparing the cost (and success
rate) of expediting parts to avoid stock-outs with the cost of holding inventory, the organization can determine the most
cost-effective operating point.

Order Aging Curves
Another useful graphical output is the order aging curve. This curve in a sense tells the rest of the story about material
availability to meet the SRT and service level objectives. More specifically, the curve demonstrates what type of service can
be expected for SRTs shorter than the objective and how long customers can be expected to wait when you are unable to
meet your SRT objective. Fig. 5 shows a family of order aging curves, each corresponding to a certain safety stock value
determined by the stated SRT goal. We see, for example, that a factory holding safety stocks to support a 99% service level
on a two-week SRT goal could, in fact, support a one-week SRT with a service level better than 90%. That same factory will
almost surely have all orders filled no later than four weeks from receipt of customer order.



Article 6 February 1997 Hewlett-Packard Journal      8

SRT Goal 0
SRT Goal 1 Week
SRT Goal 2 Weeks
SRT Goal 3 Weeks
SRT Goal 4 Weeks

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

SRT (Weeks)
Se

rv
ic

e 
Le

ve
l

Fig. 5. Order aging curves for differing SRT (supplier response time) goals.

Theory versus Practice
Ultimately, the actual performance the factory experiences in the key metrics of service level to the SRT objectives and
average on-hand inventory will depend upon whether the supply chain performs according to the inputs provided to the
statistical model. All of the estimates are predicated upon the future supply chain parameters fluctuating within the
estimated boundaries. As depicted in Fig. 6, we have built up a set of assumptions about the nature of the various
uncertainties within our supply chain. If one or more of these building blocks proves to be inaccurate, the factory will
realize neither the service level nor the inventory projected.

Realistic Unplanned
Demand

Accurate Yield

Realistic Vendor
Delivery Uncertainty

Correct Part Lead Time

Realistic Forecast
Uncertainty

Unbiased Plan

Fig. 6. Supply chain inputs. The accuracy of the estimates of service level and

on-hand inventory are dependent on the validity of the inputs.

Acknowledgments
Special thanks to Rob Hall of the HP strategic planning and modeling group and Greg Larsen of the Loveland Manufcturing
Center for assistance in the development of this theory and helpful suggestions for this paper. Not only thanks but also
congratulations to the process engineering, planning, and procurement organizations of the Colorado Springs Division for
reengineering division processes to put supply chain theory into practice.

References
1. H.L. Lee, C. Billington, and B. Carter, “Hewlett-Packard Gains Control of Inventory and Service through Design

for Localization,” Interfaces, Vol. 23, no. 4, July-August 1993, p. 10.
2. S. Nahmias, Production and Operations Analysis, Richard Irwin, 1989, p. 653.
3. M.E. Johnson and T. Davis, Improving Supply Chain Performance Using Order Fulfillment Metrics,

Hewlett-Packard Strategic Planning and Modeling Group Technical Document (Internal Use Only), 1995, p. 14.



Article 6 February 1997 Hewlett-Packard Journal      9

http://www.hp.com/hpj/97feb/fe97a6a.pdf
http://www.hp.com/hpj/97feb/fe97a6b.pdf
http://www.hp.com/hpj/97feb/fe97a6c.pdf
http://www.hp.com/hpj/97feb/fe97a6d.pdf
http://www.hp.com/hpj/97feb/fe97a6e.pdf
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/97feb/fe97a6f.pdf
http://www.hp.com/hpj/97feb/fe97a6g.pdf


Appendix I February 1997 Hewlett-Packard Journal      1

Appendix I: Derivation of the Standard

Deviation of Demand Given an R-Week

Review Period

X � �
L�R

i�1

Di � �
L�R

i�1

�Pi � ei�

V(X) � E(V(X|L))� V(E(X|L))

� E�V��L�R

i�1

�Pi � ei�|L��� V�E��L�R

i�1

�Pi � ei�|L��
� E��L�R

i�1

V�Pi � ei��� V��L�R

i�1

E�Pi � ei��
� E��L�R

i�1

�
2
e�� V��L�R

i�1

Pi�

� �
E(L)�R

i�1

E��2
e� � V�PL�R(L� R)�

� ��L � R��2
e � P2

L�R�
2
L

Hence,

�X � ��L � R��2
e � P2

L�R�
2
L

� .

We estimate �X by:

�
^

X � �L � R�s2
DE � P2

L�Rs2
LE

�

where: L

� average lead time from supplier of this part 
R � review period
s2

DE
� variance of the difference between the weekly plan 

and the actual demand

P2
L�R

� average of the plan over L�R weeks
s2

LE
� variance of the difference between the date requested 

and the date received.

http://www.hp.com/hpj/97feb/fe97a6b.pdf
http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html


Appendix II February 1997 Hewlett-Packard Journal      1

Appendix II: The Expected Value and

Variance of On-Hand Inventory when

there Are no Restrictions on Minimum

Buy Quantities

Let: I � On-hand physical inventory 
S � Order-up-to level 
Y � Amount of part consumed in first L weeks of the (L�R)-week

 cycle 
CS� Cycle stock � stock consumption to date during the R-week 

portion of the (L�R)-week cycle 
SS� Safety stock

I � S � Y � CS

I � ��L�R

i�1

Pi� SS����L
i�1

Di�� CS

E(I) � E��L�R

i�1

Pi� SS�� E��L
i�1

Di�� E�CS�

E(I) � �
E(L)�R

i�1

Pi� SS��
E(L)

i�1

Pi� E�CS�.

We will consider CS to be uniformly distributed between 0 and �
L�R

i�L�1

Di. Thus,

E(I) � �
E(L)�R

i�1

Pi� SS��
E(L)

i�1

Pi�
1
2
�

E(L)�R

i�E(L)�1

Pi

E(I) � SS� 1
2
�

E(L)�R

i�E(L)�1

Pi � SS�
RPR

2
.

The variance of I is derived as follows.

V(I) � V(S)� V(Y)� V�CS�

Even though the Pi are not all fixed, and hence S changes every R weeks, S is still a constant with respect to the inventory result during
the last R weeks of every (L�R)-week cycle. Hence, V(S) � 0.

V(I) � 0� V��L
i�1

Di�� V�CS�

V(I) � ��2
e�L� �

2
L P2

L�� V�CS�

V�CS� � E�V�CS|DL�1, DL�2, ..., DL�R��
� V�E�CS|DL�1, DL�2, ..., DL�R��

E�CS|DL�1, DL�2, ..., DL�R� �
DL�1� DL�2� ...� DL�R

2



Appendix II February 1997 Hewlett-Packard Journal      2

V�E�CS|DL�1, DL�2, ..., DL�R�� � V�DL�1 � DL�2 � ... � DL�R

2
�

� 1
4

V��PL�1 � eL�1� � �PL�2 � eL�2� � ... � �PL�R � eL�R��

�
R�2

e
4

V�CS|DL�1, DL�2, ..., DL�R� �
�DL�1 � DL�2 � ... � DL�R�

2

12

E�V�CS|DL�1, DL�2, ..., DL�R��

� E�
�
	
�DL�1 � DL�2 � ... � DL�R�

2

12 �


�
� 1

12
E�G2�,

where G � DL�1 � DL�2 � ... ��DL�R .

E�G2� � ��2
G � �

2
G� ��
�
	

R�2
e �� �L�R

i�L�1

Pi�
2

�


�

E�V�CS|DL�1, DL�2, ..., DL�R�� � 1
12�
�
	

R�2
e �� �L�R

i�L�1

Pi�
2

�


�

V�CS� � 1
12�
�
	

R�2
e �� �L�R

i�L�1

Pi�
2

�


�
�

R�2
e

4

Hence,

V(I) � �
2
e�L � �

2
L P2

L �
1

12�
�
	

R�2
e �� �L�R

i�L�1

Pi�
2

�


�
�

R�2
e

4
,

where PLis the average of the plan over the L-week period immediately before the R-week period in question.

http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a6c.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html


Appendix III February 1997 Hewlett-Packard Journal      1

Appendix III: The Expected Value and

Variance of On-Hand Inventory when

there Are Restrictions on Minimum Buy

Quantities

Here we assume that restrictions on the size of orders placed to the supplier prevent procurement from ordering exactly the difference
between the order-up-to level and the inventory position. The restriction in order size might be the result of a minimum buy size
constraint placed by the supplier, a constraint that the order must be an integer multiple of a specified quantity, or the purchaser’s desire
that deliveries come at some delivery interval greater than weekly.

Let: Min � minimum order size constraint
Mult � multiple order size constraint
DI � desired delivery interval constraint.

Then the order size decision rule is given by:

New order size � M � k � Mult,

where k is the smallest integer such that:
1. M ��Order-up-to Level � Inventory Position
2. M �Min
3. M ��DI � Average Weekly Demand.

Finally, we assume that the order is placed for the entire order quantity to be delivered L weeks later, that is, the order is not partitioned
into pieces with separate delivery dates.

Let: I � On-hand physical inventory 
S � Order-up-to level 
Y � Amount of part consumed in first L weeks of the (L�R)-week cycle 
CS� Cycle stock � stock consumption to date during the R-week 

portion of the (L�R)-week cycle 
SS� Safety stock
M ��Order quantity
� � Increment above the order-up-to level S that the inventory 

position reaches as a result of having to order a quantity M.

I � (S � �) � Y � CS

E(I) � E(S)� E(�)� E(Y)� E�CS�

E(I) � �	L�R

i�1

Pi� SS�� E(�)�	
L

i�1

Pi �
1
2
	
L�R

i�L�1

Pi

E(I) � SS� E(�)� 1
2
	
L�R

i�L�1

Pi.

To determine E(�) note that rather than buying strictly an amount equal to (S � Inventory Position) we buy a quantity M. Therefore, the
difference between what would be ordered without minimums and what is ordered with minimums varies between 0 and M�1. We will
assume that this difference is uniformly distributed within this range. Thus:

E(I) � SS�M� 1
2

� 1
2
	
L�R

i�L�1

Pi.



Appendix III February 1997 Hewlett-Packard Journal      2

The derivation of the variance of I is as follows.

V(I) � V(S) � V(�) � V(Y) � V�CS�

V(I) � 0 � V(�) � V��L
i�1

Di�� V�CS�

V(I) � V(�) � �
2
e�L � �

2
L P2

L �
1
12�
�
�

R�2
e �� �L�R

i�L�1

Pi�
2

�
	


�

R�2
e

4

V(I) � (M–1)2

12
� �

2
e�L � �

2
L P2

L �
1

12�
�
�

R�2
e �� �L�R

i�L�1

Pi�
2

�
	


�

R�2
e

4

where PLis the average of the plan over the L-week period immediately before the R-week period in question.

http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a6d.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html


Appendix IV February 1997 Hewlett-Packard Journal      1

Appendix IV: Incorporating SRT (Supplier

Response Time) into the Safety Stock

Calculations

A weekly review period is assumed.

Let:  X � actual amount of demand for an arbitrary part in L�1 weeks. 

        S � Order-up-to level � 	
L�1

i�1

Pi � Z1–��X.

X is assumed to be normally distributed with mean (L�1)�D and variance �2
D(L � 1)� �

2
L�

2
D.

Then Prob(X � S) � 1 � �, so 1 � � is the service level.

One-Week SRT
The probability that some demand is actually filled the week following its arrival is the probability that the order-up-to level over L�1
weeks covers demand incurred over just L weeks.

Let X* be the amount of demand in L weeks. X* is normally distributed with mean L�D and variance �2
DL � �

2
L�

2
D.

If SS1 denotes the appropriate safety stock for a one-week SRT, the corresponding order-up-to level for a one-week SRT goal is S1 �

	L�1

i�1

Pi � SS1. However,

Prob�X*� S1� � Prob�
�
Z �

S1 � L�D

�2
DL� �2

L�
2
D

� ��
� 1� �.

This implies that

Z1–��
S1 � L�D

�2
DL� �2

L�
2
D

�

S1 � Z1–� �
2
DL � �

2
L�

2
D

� � L�D.

The order-up-to-level will still be calculated by our in-house procurement system, POPLAN, as S1 � 	
L�1

i�1

Pi � SS1, so we now have two

expressions for S1. Assuming that �D � PL�1,

S1 � (L� 1)�D � SS1 � Z1–� �
2
DL� �

2
L�

2
D

� � L�D

SS1 � Z1–� �
2
DL � �

2
L�

2
D

� � L�D � (L� 1)�D

SS1 � Z1–� �
2
DL � �

2
L�

2
D

� � �D.

By using an order-up-to level of 	
L�1

i�1

Pi � SS1, over L�1 weeks we will bring in enough material to cover the demand incurred in L

weeks a percentage of the time equal to (1 � �) � 100%.

Two-Week SRT
The probability that some demand is actually filled two weeks after its arrival is the probability that the order-up-to level over L�1
weeks covers demand over just L � 1 weeks.



Appendix IV February 1997 Hewlett-Packard Journal      2

Let X** denote the amount of demand in L � 1 weeks and let S2 denote the order-up-to level appropriate for a two-week SRT. X** is
normally distributed with mean (L � � 1)�D and variance �2

D(L � 1) � �
2
L�

2
D.

Prob�X** � S2� � Prob	

Z �

S2 � (L � 1)�D

�2
D(L � 1) � �2

L�
2
D

� ��
� 1 � �.

This implies that

Z1–� �
S2 � (L � 1)�D

�2
D(L � 1) � �2

L�
2
D

�

S2 � Z1–� �
2
D(L � 1) � �

2
L�

2
D

� � (L � 1)�D.

Since the POPLAN system will calculate order-up-to level as S2 � �
L�1

i�1

Pi � SS2. we have two expressions for the order-up-to level, S2.

S2 � (L � 1)�D � SS2 � Z1–� �
2
D(L � 1) � �

2
L�

2
D

� � (L � 1)�D

SS2 � Z1–� �
2
D(L � 1) � �

2
L�

2
D

� � (L � 1)�D � (L � 1)�D

SS2 � Z1–� �
2
D(L � 1) � �

2
L�

2
D

� � 2�D.

General Case
In general, the safety stock required for a given SRT goal is given by:

SS � Z1–� �
2
D(L � 1 � SRT) � �

2
L�

2
D

� � (SRT)�D.

However, this equation only ensures arrival of material from the supplier no later than the SRT. It does not guarantee that the factory will
actually have the final product built and ready for shipment to the customer no later than the SRT. Production cycle time must be
incorporated into the equation to make the result useful in setting safety stocks to support product SRT objectives.

Let TB denote the production cycle time required to build a week’s worth of expected demand. Then

SS � Z1–� �
2
D�L � 1 � SRT � TB� � �

2
L�

2
D� � �SRT � TB��D.

Consider the three cases exhibited in Fig. 1. If we let build time be two weeks in all three cases and let SRT be 4, 2, and 0 weeks,
respectively, then we have the following results.

Case A. SS � Z1–� �
2
D(L � 1 � 4 � 2) � �

2
L�

2
D �� (4 � 2)�D.

Case B. SS � Z1–� �
2
D(L � 1 � 2 � 2) � �

2
L�

2
D

� � (2 � 2)�D.

Case C. SS � Z1–� �
2
D(L � 1 � 0 � 2) � �

2
L�

2
D

� � (0 � 2)�D.



Appendix IV February 1997 Hewlett-Packard Journal      3

Production Begins

Customer’s Order Arrives and
Product Ships Immediately

Parts Order
Placed to Vendor

Build
Time

SRT 0

Production Begins
Product ShipsBuild

Time

Build
Time

Product Ships

Customer’s Order Arrives

Customer’s Order Arrives and
Production Begins Immediately

Parts Order
Placed to Vendor

Parts Order
Placed to Vendor

L Weeks

L Weeks

SRT

SRT

L Weeks

(a)

(b)

(c)

In all cases, forecast error is measured as
real-time customer orders versus forecast
made L weeks before.

Fig. 1. Production cycles for different SRT goals. (a) Case A: SRT � 4 weeks. (b) Case B: SRT � 2 weeks. (c) Case C: SRT � 0 weeks.

http://www.hp.com/hpj/97feb/fe97a6e.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/97feb/fe97a6.pdf


Appendix V February 1997 Hewlett-Packard Journal      1

Appendix V: Derating the Service Level to

Account for Reduced Periods of Exposure

to Stock-outs as a Result of Minimum Buy

or Economic Order Quantities

When ordering parts from a supplier under either minimum or economic order size restrictions, with each arrival of a shipment from the
supplier we would expect the service level to jump to 100% and then decay as indicated in Fig. 1.

Fig. 1. The service level jumps to 100% each time a shipment of parts arrives and then gradually decays.
Weeks

100

Se
rv

ic
e 

Le
ve

l (
%

)

Since there is realistically only exposure to a stock-out as we approach the anticipated arrival of the next shipment from the supplier, we
can afford to run a higher risk of stocking out during these times and still achieve an overall weekly service level objective. The larger
the purchase quantity constraints, the less frequent the periods of exposure and, therefore, the lower the service level we can afford at
the end of the decay cycle depicted in Fig. 1.

Given that purchase quantity constraints dictate minimum order quantities equivalent to W weeks of expected demand, the objective is
to equalize the service level achieved on all parts regardless of the order frequencies. This will be accomplished by basing the service
level on a weekly equivalence. Given a weekly review period, a weekly desired delivery interval, and no constraints on order sizes, the
probability of making it through W weeks without a stock-out is given by:

(Weekly Service Level)W.

Therefore, if we are ordering in quantities equivalent to W weeks of expected demand, the service level used to determine safety stock
should be derated to:

(Weekly Service Level Objective)W.

Example: We will order in quantities equivalent to four weeks of supply, and we desire a weekly equivalent service level of 99%.

Derated Service Level � (0.99)4 � 0.96.

http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a6f.pdf
http://www.hp.com/hpj/97feb/fe97a6f.pdf
http://www.hp.com/hpj/journal.html


Appendix VI February 1997 Hewlett-Packard Journal      1

Appendix VI: Estimating Weekly Demand

Uncertainty from Monthly Data

The standard deviation of demand uncertainty used in the safety stock equation is a measure of the weekly uncertainty of real demand
about the plan. Ideally, data should be taken on a weekly basis so that this statistic can be estimated directly as the sample standard
deviation of the difference between the weekly plan and the actual demand. However, it is fairly common that such data is not readily
available. Typically, the factory has data aggregated at the monthly level for comparing plans to actual demand. An estimate of weekly
demand uncertainty can still be obtained if we make a simplifying assumption about the interdependence of the demand uncertainty
from week to week.

Assumption: Demand uncertainties are independent from week to week within a month, that is, knowing the difference between the
actual demand and the plan for this week does not give you any information for predicting the difference between the actual demand
and the plan next week. If this is the case, then

52�2
weekly � 13�2

monthly

or

�weekly �
3

13
� �monthly.

http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a6g.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html


Appendix VII February 1997 Hewlett-Packard Journal      1

Appendix VII: Adjusting Safety Stock to

Account for Yield Loss

Procurement may wish to account for part yield loss in some situations. Here we use yield loss in a general sense to include additional
part consumption either because of literal losses resulting from failures or damage or because of additional use of the part for
unplanned reasons.

Let Yi denote the weekly yield of an arbitrary part. We will assume that Yi is distributed according to the binomial distribution.

The actual demand on a part per week is given by:

Di	 �
Di

Yi

 for week i � 1, 2, 3, ... . The expected value of the actual demand is:1

E(Di	 ) � E�Di

Yi
� � �D

�Y
� 1

�2
Y

cov(Di, Yi)�
�D

�3
Y

V(Yi).

We will assume that yield loss each week is not correlated with the demand each week. Then:

E(Di	 ) �
�D
�Y
�

�D

�3
Y

V(Yi).

V(Yi) �
�Y(1� �Y)

n �
�Y(1� �Y)
�D��Y

�
�2

Y(1� �Y)
�D

where n is the average number of parts used per week and we have approximated n by the average weekly demand divided by the
average yield. Thus,

E(Di	 ) �
�D
�Y
�

�D

�3
Y
��2

Y(1� �Y)
�D
� � �D

�Y
�

(1� �Y)
�Y

.

When �Y � 50%, the term 
(1� �Y)

 is less than or equal to one and has little effect on expected demand. Therefore:

E(Di	 ) �
�D
�Y

.

The variance of the actual demand is:1

V(Di	 ) � V�Di

Yi
� � ��D

�Y
�2��2

D

�2
D
�

�2
Y

�2
Y

–
2cov(Di, Yi)
�D�Y
�.

As before, we will assume that yield loss is not correlated with the demand each week:

V(Di	 ) � ��D
�Y
�2��2

D

�2
D
�

�2
Y

�2
Y
�.

Again we will approximate �2
Y by

�2
Y
�1� �Y�
�D

:

V(Di	 ) � ��D
�Y
�2��2

D

�2
D
�

1� �Y
�D
� � �2

D

�2
Y
�

�D�1� �Y�
�2

Y
.

Therefore, by adjusting the expected weekly average demand by dividing by the average yield and adjusting the variance of the weekly
demand uncertainty as indicated above, we can obtain approximate values for safety stock, average expected on-hand inventory, and
the standard deviation of on-hand inventory using the results obtained earlier in this paper.

However, while we have adjusted the expected weekly demand by the yield loss, our in-house system, POPLAN, will not. Therefore, we
must pass the impact of the yield adjustment to POPLAN via the safety stock parameter.



Appendix VII February 1997 Hewlett-Packard Journal      2

Let SS′ denote the safety stock obtained when using the yield-adjusted average demand and standard deviation of demand uncertainty
as derived here. The objective is to pass a safety stock value to POPLAN that results in the appropriate order-up-to level.

The safety stock to pass to POPLAN is given by:

SS*� ��D
�Y

(L � R) � SS�� � �D(L � R).

In words, calculate the safety stock and the order-up-to level using the yield-adjusted average weekly demand and the yield-adjusted
standard deviation of weekly demand uncertainty, then subtract the product of the average weekly demand without yield adjustment
and L�R.

Reference
1. A.M. Mood, F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, Third Edition, McGraw-Hill, 1974, p. 181, theorem 4.

http://www.hp.com/hpj/97feb/fe97a6.pdf
http://www.hp.com/hpj/97feb/fe97a7.htm
http://www.hp.com/hpj/journal.html


Article 7 February 1997 Hewlett-Packard Journal      1

A New Family of Sensors for Pulse

Oximetry

This new family of reusable sensors for noninvasive arterial oxygen
saturation measurements is designed to cover all application
areas. It consists of four sensors: adult, pediatric, neonatal, and ear
clip.

by Siegfried Kästle, Friedemann Noller, Siegfried Falk, Anton Bukta, Eberhard Mayer, 

and Dietmar Miller

Since the early 1980s, when pulse oximetry was introduced, this noninvasive method of monitoring the arterial oxygen
saturation level in a patient’s blood (SpO2) has become a standard method in the clinical environment because of its simple
application and the high value of the information it gives nurses and doctors. It is as common in patient monitoring to
measure the oxygen level in the blood as it is to monitor heart activity with the ECG. In some application areas, like
anesthesia in a surgical procedure, it is mandatory for doctors to measure this vital parameter. Its importance is obvious
considering that a human being cannot survive more than five minutes without oxygen supply to the brain.

Before the advent of pulse oximetry, the common practice was to draw blood from patients and analyze the samples at
regular intervals—several times a day, or even several times an hour—using large hospital laboratory equipment. These
in-vitro analysis instruments were either blood gas analyzers or hemoximeters. Blood gas analyzers determine the partial
pressure of oxygen in the blood (pO2) by means of chemical sensors. Hemoximeters work on spectrometric principles and
directly measure the ratio of the oxygenated hemoglobin to the total hemoglobin in a sample of blood (SaO2).

HP pioneered the first in-vivo technology to measure a patient’s oxygen saturation level without the need of drawing blood
samples in 1976 with the HP 47201A eight-wavelength ear oximeter.1 An earprobe was coupled through a fiber-optic cable to
the oximeter mainframe, which contained the light source (a tungsten-iodine lamp and interference filters for wavelength
selection) and receivers. This instrument served as a “gold standard” for oximetry for a long time and was even used to
verify the accuracy of the first pulse oximeters in clinical studies.

The real breakthrough came in the 1980s with a new generation of instruments and sensors that were smaller in size,
easier to use, and lower in cost. These new instruments used a slightly different principle from the older, purely empirical
multiwavelength technology. Instead of using constant absorbance values at eight different spectral lines measured through
the earlobe, the new pulse oximeters made use of the pulsatile component of arterial blood generated by the heartbeat at
only two spectral lines. The necessary light was easily generated by two light-emitting diodes (LEDs) with controlled
wavelengths. Small LEDs and photodiodes made it possible to mount the optical components directly on the sensor applied
to the patient, avoiding the necessity of clumsy fiber-optic bundles.

Instruments and Sensors
The first pulse oximeters were standalone products. HP offered its first pulse oximetry devices as additional measurements
for an existing monitoring product, the HP 78352/54 family, in 1988. A year later the Böblingen Medical Division introduced
a new modular patient monitor, the Component Monitoring System,2 for which a pulse oximeter module was also available,
the HP M1020A (Fig. 1). The application was limited to adults and the only sensor available was the HP M1190A, an
advanced design at that time. This sensor is the ancestor of the new sensor family presented in this paper.

Two years later, the HP 78834 neonatal monitor extended SpO2 measurement to newborn applications. Third-party sensors
were used.

Today, all typical monitoring application areas have discovered pulse oximetry: intensive care, operating rooms, emergency,
patient transport, general wards, birth and delivery, and neonatal care. HP monitors serving these areas include the HP
M1025A anesthetic gas monitor (1990), the HP Component Transport Monitor (1992), SpO2 options for the HP M1722A and
M1723A CodeMaster XL defibrillators (1994, Fig. 2), and recently, the HP M1205A OmniCare monitor and the HP 1350B
maternal SpO2 option for the HP XM Series fetal monitors (Fig. 3).

New SpO2 Sensor Family
A new family of reusable HP pulse oximetry sensors is now available (Fig. 4). Lower in cost than previous reusable sensors
and easier to use than adhesive disposable sensors, the new HP SpO2 sensor family is hardware compatible with HP’s
installed base of pulse oximetry front ends. An upgrade to the software is necessary to update the calibration constants in
the instrument algorithms to match the optical characteristics of the new sensors, such as spectra and intensity. The new



Article 7 February 1997 Hewlett-Packard Journal      2

Fig. 1. The HP M1020A SpO2 front-end module for the

HP Component Monitoring System.

Fig. 2. An HP CodeMaster defibrillator with SpO2 channel.

Fig. 3. The SpO2 channel in an HP XM Series fetal monitor monitors the mother during delivery.

Fig. 4. The new family of reusable HP pulse oximetry (SpO2) sensors: (left to right)

adult finger glove, pediatric finger glove, neonatal foot strap, ear clip.



Article 7 February 1997 Hewlett-Packard Journal      3

sensor family covers all application areas and consists of the HP M1191A (adult, new wavelength), M1192A (pediatric),
M1193A (neonatal), and M1194A (clip).

SpO2 Basic Measurement Principles
The breakthrough from oximetry to pulse oximetry came with the new LED technology in 1982 to 1985. LED light sources
are very small and easy to drive, and have the great advantage that they can be mounted within the sensor together with a
photodiode receiver (Fig. 5). For correct measurements at least two LEDs with different wavelengths are necessary. A
suitable combination consists of a red LED (650 nm) and an infrared LED (940 nm). The red LED’s wavelength has to be in
a narrow range, which is not normally possible with standard commercially available LEDs. One way to overcome this is to
provide in each sensor a calibration resistor matched to the actual LED wavelength. Another way is to select only LEDs with
a fixed wavelength. This method becomes practical if the LED wafer production yields a narrow wavelength distribution. HP
decided on this second method because the red LEDs could be obtained from the HP Optoelectronics Division, which had
long experience in wafer production and was able to maintain a sufficiently narrow wavelength distribution.

Red Infrared

LEDs

Photodiode

Fig. 5. The basic components of an SpO2 pulse oximeter sensor are two LEDs

with different wavelengths as light sources and a photodiode as receiver.

The front-end hardware applies a time multiplexed approach in which the two LEDs are switched on and off alternately.
The time phases usually consist of a minimum of three: active red, active infrared, and a dark phase in which the ambient
light is measured. There can be more than three phases to allow more LEDs to be powered in one multiplexing time frame
or to allow additional dark phases. The phases are similar in duration. The modulation frequency (the complete frame
repetition rate) typically ranges from 200 Hz to 2 kHz. The frequency spectrum of such a time multiplexed signal at the
receiving photodiode consists of small bands (approximately �10 Hz) around the modulation frequency and its harmonics.
Depending on the width of the individual LED pulses, the harmonic frequency content is of significant amplitude for several
tens of harmonic orders.

For an idealized light absorbing model as shown in Fig. 6, the Lambert-Beer law applies. The intensity I of the light
transmitted is related to the incident light I0 by:

    I � I0exp(� Ext � c � d), (1)

where Ext is the extinction coefficient and c is the concentration of a single light absorber with thickness d. Ext varies as a
function of the absorbing substance and the wavelength of the light. Further assumptions for the validity of equation 1 are
that the light source is monochromatic and has parallel propagation and that the absorber is optically homogeneous (no
scattering effects).

Under these assumptions the model of Fig. 6 can be used to derive the basic pulse oximetric quantities. Fig. 7 shows a
simplified model for the blood vessel system in tissue. With each heartbeat, the volume of the arteries increases before the
blood is forced into the capillaries and from there into the veins. This change of arterial volume is the basis for pulse
oximetry because it makes it possible to separate the arterial blood from all other absorbing substances.

Assume that there are N layers of absorbers and that the ith absorber layer has concentration ci, thickness di, and extinction
coefficient Ext(i,�). From equation 1 it follows, at diastole, when there is a maximum of light intensity:

Imax(�) � ILED(�)exp(��
N

i�1

Ext(i, �)cidi). (2)



Article 7 February 1997 Hewlett-Packard Journal      4

Transmitted Light,
Intensity I

Incident Light,
Intensity IO

d Thickness
of Absorber

Ext
c

Extinction Coefficient of Absorber
Concentration of Absorber

Fig. 6. Idealized model for the validity of the Lambert-Beer

law: a monochromatic light source, parallel light

propagation (no point source), and no scattering.

ILED

�d Capillaries

Tissue
Arterial Blood

Venous Blood

Imin

Imax

Fig. 7. Simplified model for the blood vessel system. With

each heartbeat, the arterial radius expands by an amount

�d, which yields a light intensity change from Imax to Imin.

At systole, the maximum of the heartbeat, and under the assumption that only hemoglobin and oxyhemoglobin are active
absorbers in the arterial blood, two additional absorbing parts are added in the exponent of equation 2, which yields the
minimum of light intensity:

Imin(�) �

Imax(�)exp(� �d(Ext(Hb, �)[Hb]� Ext(HbO2, �)[HbO2])),
(3)

where [Hb] is the concentration of hemoglobin and [HbO2] is the concentration of oxyhemoglobin. Dividing equation 2 by
equation 3 and taking the logarithm yields the absorption of the arterial blood:

ln�Imax(�)
Imin(�)
� � �d(Ext(Hb, �)[Hb]� Ext(HbO2, �)[HbO2]), (4)

where �d is the change in the arterial radius (see Fig. 7). The definition for the oxygen saturation in pulse oximetry is:

SpO2 �
[HbO2]

[Hb]� [HbO2]
. (5)

With two light sources (LEDs) of different wavelengths �1 and �2 the arterial expansion �d can be eliminated by the
following relation, which is called the ratio, �:

��

ln�Imax(�1)
Imin(�1)
�

ln�Imax(�2)
Imin(�2)
�

�
Ext(Hb, �1)(1� SpO2)� Ext(HbO2, �1)SpO2

Ext(Hb, �2)(1� SpO2)� Ext(HbO2, �2)SpO2
. (6)

Thus, the oxygen saturation SpO2 is:

SpO2 �

�Ext(Hb, �2)� Ext(Hb, �1)
�(Ext(Hb, �2)� Ext(HbO2, �2))� Ext(HbO2, �1)� Ext(Hb, �1)

.



Article 7 February 1997 Hewlett-Packard Journal      5

1000

1000

800

600

400

200

0
900800700650600

Wavelength � (nm)

HbO2 Hb

Isobestic
Wavelength

�ISO

Infrared LED
�2

Red LED
�1

Ex
tin

ct
io

n 
Co

ef
fic

ie
nt

 (1
/M

ol
 c

m
)

.
Fig. 8. Extinction coefficients for hemoglobin Hb and oxyhemoglobin HbO2 as a function of wavelength.

A red LED with � � 650 nm gives good resolution between HbO2 (100% SpO2) and Hb (0% SpO2).

For example, with LED wavelengths �1 � 650 nm and �2 � 940 nm,the extinction coefficients are (see Fig. 8):

Ext(Hb,650) � 820 (Mol�cm)–1

Ext(HbO2,650) � 100 (Mol�cm)–1

Ext(Hb,940) � 100 (Mol�cm)–1

Ext(HbO2,940) � 260 (Mol�cm)–1.

In Fig. 9 the SpO2 is plotted as a function of the ratio �. The Lambert-Beer relation is compared with a calibrated curve
derived from real arterial blood samples from volunteers (see subarticle “Volunteer Study for Sensor Calibration.” ). The
deviations exist because conditions in the real case (complicated tissue structure, scattering effects, point light source, etc.)
are different from the Lambert-Beer assumptions.

120

HP M1190A

Lambert-Beer

110

100

90

80

70

60

50

40
0 0.5 1.51.0 2.0 2.5 3.0

Ratio �

Sp
O

   
 (%

)
2

Fig. 9. Theoretical (Lambert-Beer) and real calibration (arterial blood samples) curve for the HP M1190A

adult sensor. The difference is mainly caused by scattering effects and nonideal light sources.

Fig. 10 shows the sensor LED driver circuit and receiver circuit. The LEDs are driven in sequence at a repetition rate of
375 Hz in antiparallel fashion. At the photodiode the intensities arrive in the sequence red (R), infrared (IR) and dark. In the
receiver circuit this signal is split into three paths: a red path, an infrared path, and a dark path. The dark intensity is
subtracted from the red and infrared.

Fig. 11 shows the separated red and infrared patient signals with their Imin and Imax values caused by arterial pulsation, from
which the ratio � can be calculated (equation 6).

Ambient Light and Electrical Noise
In a clinical environment, the sensor picks up ambient light and electromagnetic noise from various sources. The major
source for ambient light is room illumination, typically fluorescent ceiling lamps, which have broad spectral bands with
peaks at harmonics of the power-line frequency, 50 Hz or 60 Hz. Very often, electrical noise also comes from the power line
and shows up as harmonics of the line frequency. Other well-known sources of large interfering electrical signals are the
electrosurgery devices used in operating rooms, which can be very broadband.

http://www.hp.com/hpj/97feb/fe97a7a.pdf


Article 7 February 1997 Hewlett-Packard Journal      6

ILED

IR

IPh

t

Dark

R

R

IR

t

ILED

IR R

IPh

IR(t)

R(t)

Dark

Fig. 10. (a) Sensor LED driver circuit and (b) receiver circuit.

(a)

(b)

Imin
(R)

Imax
(R)

Imin
(IR)

Imax
(IR)

I(t)

IIR(t)

t

IR(t)

Fig. 11. Separated red and infrared patient signals with their Imin and Imax values caused by arterial pulsation.

Typical current levels at the sensor photodiode are around 1 �A dc with the blood current pulse modulated on the dc levels
at a modulation depth of typically one percent. It is likely that the LED spectra including the desired signal and the optical
or electrical noise spectra will overlap. Any noise lines in one of the LED modulation bands will be demodulated and folded
down to the baseband, where they will contribute to poor signal-to-noise ratio (S/N). A very dangerous situation for the
patient can occur in the monitoring of neonates, who are often treated with very bright UV lamps for bilirubin phototherapy.
Neonates give poor SpO2 signals because of poor vascular perfusion, so the bright UV ambient light can cause situations in
which S/N�1. A pulse oximeter is very likely to be misleading in these situations. It can derive values for pulse rate and
oxygen saturation that are wrong because the input signals are dominated by noise.

Because interference can lead clinicians to apply incorrect care and therapy and cause harm or even death to patients, it
must be avoided at all costs. A major goal for the sensor design was optimum optical and electrical shielding. Fig. 12 shows
the pediatric sensor. Its closed housing is designed to shield the sensor from interfering ambient light.



Article 7 February 1997 Hewlett-Packard Journal      7

Fig. 12. The HP M1192A pediatric sensor has a closed housing to shield it from interfering ambient light.

Movement Artifacts
Because the pulse oximetry method relies on the pulsatile part of the absorption, probably the most frequent cause of
trouble is movement of the patient. Any movement usually causes movement of the sensor or the nonarterial tissue under
the sensor and thereby leads to noise on the signals. A design goal for the new sensors was to be small and lightweight and
to attach firmly to the patient. The cable was made as thin and flexible as possible consistent with the need for robustness,
so that it adds little weight and stiffness, thereby helping to decouple the sensor from cable movements.

Cable Robustness
The clinical environment can be very harsh. Sensors fall off patients. People step on them and carts roll over them. Cables
get squeezed between drawers and racks. The cables of medical sensors, in particular, have to be extremely robust. They are
moved, bent, kinked, and treated with aggressive disinfectants.

A carefully selected lead composition and the use of nonbreakable material were goals for the cable construction. A new
connector and interconnection concept are used. The interconnection is split into two parts: a short, thin, and more fragile
cable is used with the sensors for low weight and minimum mechanical stiffness, while a longer, heavier, more robust cable
was designed as an interface cable to the instrument.

The connector joining the cables (Fig. 13) is optimized for small size, low weight, and robustness. Special care was taken to
provide very high insulation between the pins and to make the interconnect junction watertight to avoid leakage currents in
humid environments like neonatal incubators. In older designs, saturated water vapor and salty residues from infusions or
blood on connectors was a common source of problems, leading to erroneous measurement results.

Setting Design Goals
HP has offered a reusable SpO2 sensor since 1988, but in one size only: the adult HP M1190A sensor. This sensor is very
well-accepted. The objective for the new sensor project was to extend this sensor technology to a family of sensors covering
all of the different application areas, so the customer is not forced to use a third-party sensor for application reasons.



Article 7 February 1997 Hewlett-Packard Journal      8

(a) (b)

Fig. 13. Plug and socket connector system.

Based on experience with the HP M1190A sensor and on customer feedback we defined the following objectives:

� “Must” Objectives

� Reusable sensors only
� Cost competitive with disposable sensors
� Clear, nonconfusing application
� No burns on skin
� State-of-the-art necrosis factor behavior (minimal local cell damage)
� No penumbra effect
� Influence of ESI (electrosurgery interference) as low as in HP M1190A
� Backward compatibility with HP monitors (hardware)

� “Want” Objectives

� Reliability equal to HP M1190A
� Easy to use
� Comfortable application over long period of time (several days)
� Reliable fixing mechanism
� Cleaning and sterilization by immersion in solutions
� Mechanically robust design like HP M1190A
� Cable size, length, flexibility, and quality similar to HP M1190A; alternatively, trunk cable and sensor cables
� No influence of ambient light (operating room, bilirubin therapy, fluorescent lights)
� Minimum motion artifacts
� Backward compatibility with HP monitors (software)
� Compatibility with competitive monitors.

Reusability was required because HP feels environmentally responsible for HP products. Most of the sensors on the market
are disposable, which means that they are applied only once, after which they must be disposed of as medical waste.
Reusable sensors are a small contribution to protecting the environment.

We used the Quality Function Deployment3,4 (QFD) tool for developing these sensors. The starting point for QFD is the
customer—what does the customer want? The customer requirements are weighted according to their relative importance,
the corresponding engineering characteristics are listed, and step by step a matrix is built that provides the means for
interfunctional planning and communication.

The three most important customer attributes we found are:

� Functionality. Minimize physiological effects like skin irritation and low perfusion. This means selecting the
appropriate material and applying the appropriate clamping force.

� Performance. Ensure good signal quality. The most important issue was to select optical components to
provide good light transmission.

� Regulations. The sensors had to meet U.S. FDA requirements and international safety and EMC standards.

We have had several clinical trials to verify that we understood the customer requirements correctly. At the release of the
product for manufacturing we checked our solutions again to make certain that they are in accordance with the required
customer attributes and engineering characteristics. We have been shipping the sensors for over half a year without any
customer objections. This makes us fairly confident that the sensors meet customer expectations.



Article 7 February 1997 Hewlett-Packard Journal      9

Design Concept
The next step after defining the project goals was to evolve the basic design concept. To reduce waste (even reusable parts
have to be replaced eventually) we decided that each transducer would consist of two parts: an adapter cable to be used for
all sensors and a sensor cable consisting of connector, transmitter, receiver, and a special sensor housing for the specific
application site (finger of a child or small adult, foot or hand of a neonate, ear of an adult). We made this split since the
lifetime of the adapter cable is longer (we estimated three times longer) than that of the sensor cable, which is much lighter
in weight to reduce motion artifacts. A further advantage of the two-part design is the flexibility for future products to use
the sensor without an adapter cable. The design required the development of a new 8-pin connector family.

To minimize the risk, because of the very good customer feedback for the existing adult sensor, we decided to change only
the optical elements of the transducer.

The detailed design concept is shown in Fig. 14. The adapter cable is a shielded twisted-pair cable with four single
conductors, a 12-contact male plug on the instrument side, and an 8-contact female connector on the sensor side. The sensor
cable is a shielded twisted pair cable with two conductor pairs, an 8-contact male plug on the instrument side, a transducer
consisting of transmitter and receiver molded in epoxy, and a special sensor housing.

Adapter CableSensor Cable

Neonatal/Adult
M1193A

Pediatric/Small
Adults M1192A

Adult M1191A

Clip M1194A

Fig. 14. Design concept for the new sensor family.

Housing
With the project goals in mind, the first proposals for the sensor housing were designed and prototype tooling was ordered
to get parts ready for the first application tests. It was especially necessary to start with application tests as soon as possible
for the neonate sensor, because this sensor would cover the biggest area and would be the most sensitive. The design of the
pediatric sensor was more straightforward. It had to be similar to the existing adult sensor. For the other two sensors we
approved a couple of proposals and ordered the prototype tooling for those.

With these samples we went into hospitals and spoke to nurses and medical technicians. When their response was positive,
we began to improve the design step by step, making all changes in the prototype tooling as far as possible. If it was not
possible to realize a necessary change, new prototype tooling was ordered. Only after this iterative process was complete
did we order the final tooling.

The idea for the neonatal sensor, Fig. 15, was to place the transducer elements facing one another to make it easier to apply
the sensor on foot or hand, and to have a long strap with a special fastener that allows application of the sensor on different
foot or hand sizes. The transducer is positioned on the foot or the hand and the strap is threaded through the first latch and
pulled slightly while holding the top of the transducer. The second latch is only used if the strap is too long.

The idea for the clip sensor was to integrate the spring for the necessary clamping force into the molded part (Fig. 16). The
transducer is clipped onto the fleshy part of the earlobe. To minimize motion artifacts generated by patient movements a
plastic fixing mechanism that hooks over the ear is provided.



Article 7 February 1997 Hewlett-Packard Journal      10

Top of
Transducer

First Latch

Strap

Transducer Elements

Second Latch

Fig. 15. Neonatal sensor.

Spring

Fig. 16. Clip sensor.

Fig. 17. Cutaway view of two pins of the 8-pin connector

between the adapter cable and the sensor cable. The

connector is watertight when joined.

Cable and Connector
Three different types of cables are used for the sensor family. For the adapter cable we use a very robust cable with an outer
jacket made of polyurethane. The same adapter cable is used with all of the sensor types.

Two different sensor cables are used, one for the adult transducer and another for the rest of the family. They differ only in
the outer jacket. For the adult sensor the outer jacket is made of silicone because of the manufacturing process. The sensor
housing, which is made of silicone, is molded together with the cable and other elements in a molding machine. Because
silicone can’t be combined very well with different materials, the outer jacket must also be silicone.

For the rest of the sensor family we use a split, lightweight cable with an outer jacket made of polyurethane.

The construction of all three cables is similar. All are twisted-pair and have a Kevlar braid anchored in both the sensor and
the connector to improve the strain relief.

The 8-pin connector between the sensor cable and the adapter cable also has a soft outer jacket made of polyurethane. The
Kevlar braid is anchored inside the connector. Watertightness is achieved when the two halves of the connector are joined
(see Fig. 17).

Optical Components
The optical elements are mounted on ceramic substrates shaped by cutting with a high-energy laser. The transmitter
(Fig. 18) consists of two LED die (red and infrared) mounted on gold metallization. A photodiode on the receiver ceramic
(Fig. 19) receives the sensor signal. A dome of epoxy material protects the elements and bond wires from mechanical stress.
The wires of the transducer and the Kevlar braid are soldered and anchored on the backside of the ceramic.

To a first approximation, LEDs have a Gaussian intensity spectrum in which the peak wavelength is equal to the centroid
wavelength. Because the red area (�650 nm) of the extinction coefficients is very sensitive to wavelength variation (see
Fig. 8) and the intensity distribution is not actually Gaussian and symmetrical, we use the centroid wavelength, which differs
slightly from the peak wavelength, as an adequate characterization parameter for the LED (Fig. 20). Normally the



Article 7 February 1997 Hewlett-Packard Journal      11

Fig. 18. LED transmitter. Fig. 19. Photodiode receiver.

Centroid Wavelength �cPeak Wavelength �p

1.2

1.0

0.8

0.6

0.4

0.2

0
550 600 650 700 750 800

Wavelength � (nm)

Re
la

tiv
e 

In
te

ns
ity

Fig. 20. A typical LED intensity distribution. For SpO2 measurements the centroid

wavelength gives a better characterization than the peak wavelength.

wavelength variation on a preselected wafer for red LEDs is in the range of �5 nm. For the HP M1190A sensor in 1990, the
HP Optoelectronics Division installed a selection process for a narrow, �1-nm centroid wavelength variation.

For the new sensor family we chose for each sensor an LED pair with centroid wavelengths of 660 nm (red) and 890 nm
(infrared). For the red LED a new high-efficiency AlGaAs technology was chosen. The maximum intensity for these LEDs is
about a factor of four higher than for the older ones. This has the big advantage that the transmission values for both the red
LEDs and the infrared LEDs are about the same. The average drive current for the LEDs, and therefore the heat dissipation,
can be dramatically lowered.

The transmission Tr is defined as the ratio of photocurrent to LED current:

Tr�
Iph

ILED
, (8)

where Iph is in nanoamperes and ILED is in milliamperes. Tr depends strongly on the absorption and extinction coefficients
of the patient’s tissue. Mean values are about 70 nA/mA over a large patient population. For thin absorbers like the earlobe,
values of Tr as high as 300 nA/mA are possible. With new SpO2 front-end hardware this would not have been a problem, but
to be compatible with older pulse oximetry instruments we use a smaller active area of the photodiode for the HP 1194A ear
sensor to get the same Tr values as the other sensors.

The LED supplier (not HP for the new sensors) guarantees a narrow centroid wavelength variation of less than �2 nm. For
LED qualification measurements, an optical spectrum analyzer with a wavelength resolution of 0.2 nm is used. All LED
parameters are measured with a constant drive current of 20 mA. Because there is a wavelength shift over temperature of
about 0.12 nm/K, the ambient temperature has to be held constant. Depending on the LED packaging, there is also a certain
warmup time, which has to be held constant for LED qualification. In clinical practice, there can always be a temperature
shift during SpO2 measurements, but because of the definition of the ratio �, with red intensity in the numerator and infrared
intensity in the denominator (see equation 6), this effect is compensated within the specified operating temperature range of
15°C�T�45°C.



Article 7 February 1997 Hewlett-Packard Journal      12

Another important factor is that some red LEDs have a low secondary emission (�4% of maximum intensity) at a
wavelength of typically 800 to 850 nm (Fig. 21). For higher secondary intensities, interference with the infrared LED causes a
ratio error and therefore an SpO2 error, which must be eliminated. For the new high-efficiency LEDs the secondary emission
is typically less than 0.1%.

600

1.2

1.0

0.8

0.6

0.4

0.2

0
700 800 900 1000

Wavelength � (nm)

Re
la

tiv
e 

In
te

ns
ity

Red LED Centroid
Wavelength
�c 650 nm

Red LED
Secondary Emission

Wavelength 800 nm

Infrared LED Centroid
Wavelength �c 900 nm

Fig. 21. Typical red and infrared LED spectra for SpO2 sensors. The spectral half-bandwidth

for the red LED is about 20 nm and for the infrared LED about 40 nm. A secondary emission

peak for the red LED is undesired and has to be lower than 4% of the maximum intensity.

The receiver element is a standard silicon photodiode with peak sensitivity at 850 nm. The active area is approximately 2 mm
square for the HP M1191/92/93A sensors and 1 mm square for the HP M1194A ear sensor. The die are mounted on a ceramic
substrate with metalized layers for shielding.

The package for the LEDs in the HP M1190A sensor was a standard subminiature package. The emitter consisted of a
red-infrared-red triplet in a longitudinal arrangement to make the apparent emission points for the red and infrared sources
virtually identical. This is important for the ratio calculation, because both light paths have to be about the same length. One
disadvantage is a possible malfunction when the patient’s finger does not cover the entire light source. Then a part of the red
light can cause an optical shunt that yields dc red levels that are too high (penumbra effect), causing false high readings. In
the new sensor design, the two LEDs are very close together (�0.5 mm) on a common leadframe (see Fig. 22). This should
eliminate the penumbra effect.

ÇÇÇÇÇÇÇÇÇÇ

5.5 mm

0.5 mm
Red

Infrared

7.5 mm

LED Assembly Photodiode Assembly

Fig. 22. Transmitter and receiver assemblies for the new sensor family are on ceramic substrates. To avoid

asymmetric optical shunting (penumbra effect) the two LED die are mounted as close as possible to each

other. An epoxy coating is added before final packaging to protect the optical parts.

The die are mounted on a ceramic substrate and covered with a transparent epoxy material. A design goal was to get a water
and disinfectant resistant seal between the cable and the package. Immersion and disinfection tests show that this goal was
achieved.



Article 7 February 1997 Hewlett-Packard Journal      13

Materials
For the pediatric and neonatal sensors we chose silicone with a hardness of 35�5 Shore A. The material is very robust and
has good tensile strength compared to other silicones. Silicone is very often used in clinical areas and is very well-accepted.
It is very resistant to chemicals and causes no skin irritations when used correctly.

For the clip sensor we chose a polyurethane with a hardness of 75�5 Shore A, which gives the required clamping force
(Fig. 23).

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Small
Child
12 kg

Small
Adult

Adult

2.0 3.0 4.0 5.0 6.0
Earlobe Thickness (mm)

0 New parts, not used
1 Measured after 10,000 cycles, on the same day
2 Measured after 10,000 cycles, on the next day
3 Measured after 10,000 cycles, two days later

Ea
rl

ob
e 

Fo
rc

e 
(N

)

2

0

3

1

Fig. 23. Spring forces in the clip sensor.

Manufacturing Process
The manufacturing process for the new HP M1191A sensor is injection molding, the same as for the older HP M1190A.
These sensors use only silicone rubber. For the HP M1192/ 93/94A sensors a different manufacturing process was necessary
because these sensors use two different materials—silicon rubber and polyurethane, which do not combine well in the
injection molding process. We also wanted to reduce the manufacturing costs and to gain more flexibility in choosing
suppliers.

We decided to cast the premounted optical elements together with the cable in a special epoxy that combines very well
with the cable including the Kevlar braid. We thus ensured watertightness, which means the sensors can be disinfected by
immersion in solutions.

Reliability
To reach the reliability goals a few iterative changes were necessary and different tests installed. Many tests and customer
visits were conducted to ensure that the sensors will not break. We tested several housing materials until we found the right
one for the rough clinical environment. The tensile strength and robustness have been improved dramatically compared to
the first samples. The method of anchoring the Kevlar braid in the ceramic substrate and connector was also improved
several times. Every prototype was tested in the same way, by a combination of mechanical stress and cleaning by
immersion in different solutions.

Technical Qualification
The most important factor for qualifying the new SpO2 sensors has been how to determine test methods that are able to
expose any weak points of the design. The qualification stress should be higher than the normal clinical application stress to
provoke failures. The fulfillment of customer expectations concerning reliability was the overall guideline for prioritizing the
test emphasis. Because of its customer orientation, the QFD methodology was an excellent tool for determining the main
focus for testing. To make QFD more practical, we divided the sensor into three subelements, which made the specifics of
the subassembly more visible. The three subelements were the interconnection, the sensor housings, and the optical
assemblies.

The correlation matrix between the customer requirements and the technical specifications generated a relative importance
ranking within the broad list of requested technical details. We could now determine which were the most important
technical parameters. Their performance would have the greatest impact on the acceptance of the sensors in the market.

It was very important to assess the technical complexities and difficulties in the realization of technical specifications. This
was the task of the engineers of a crossfunctional team chosen for their experience and ability to foresee potential problems.
The correlation between expected technical difficulties and the importance of the parameters to the customer was an



Article 7 February 1997 Hewlett-Packard Journal      14

essential input for further activities. We could now focus our efforts to reduce the risk potentials, which were clearly
defined. High risk means high importance correlated with high technical difficulty ratings. These high-priority items were
communicated to the project managers to give them an impression of the degree of technical maturity in this early project
phase.

A critical assessment of design risk potential could now be made. This triggered a review of the importance of each
customer requirement and gave the designers valuable inputs for design concepts. The results were also useful when
considering strategies for accelerated stress testing.

The next step in the QFD process was to transfer the information on high-priority technical requirements into another matrix
showing the relationship between parts characteristics and technical requirements. The key deliverables of this exercise
were:

� Identification of key parts and their characteristics

� Preselection of parts characteristics to find critical parts for performing a design failure mode and effect
analysis (FMEA)

� Information to aid in selecting between design alternatives to find the most competitive design concepts

� Inputs for stress testing using parts characteristic importance information.

The FMEA generates risk priority numbers (RPN). These numbers describe how often a failure will be occur, how easily it
will be detected, and how severe the failure will be. Taking the interconnection as an example, the risk assessment was
divided into three categories:

� High Risk: RPN�200 and high parts importance

� Medium Risk: RPN�100 and high parts importance

� Low Risk: RPN�100 and low parts importance.

In this way, key customer needs were identified and test parameters selected. We also took into account the feedback from
clinical trials.

Fig. 24 gives an overview of the qualification tests that were performed to get release approval for the sensors. A special
machine was designed to simulate the cable stress that occurs in hospitals. We call this test the bending/torsion test. With
a calculated number of cycles, equivalent to our reliability goals, we stressed the critical cable sections to ensure that the
lifetime requirements were met.

Supplier Selection
The supplier chosen to manufacture the new SpO2 sensor family had to meet a number of specific requirements. The
supplier is responsible for the majority of the manufacturing process steps. This has a positive influence on production lead
time, logistics, communication, and costs. To reach our quality goals with one supplier who is responsible for nearly all
process steps is much easier than with a long chain of suppliers. The requirements covered technology, vertical integration,
and costs.

Fourteen international suppliers were evaluated. Nine were not able to manufacture the sensors because they did not have
the required technology. After considering cost aspects, only two suppliers fulfilled the selection criteria. For these two
suppliers, we constructed supplier profiles derived from the QFD method.

To construct a profile, each customer need is listed along with an evaluation of how well the supplier fulfills that need in
terms of technology and processes. The level of fulfillment is evaluated by an HP specialist team, which also evaluates the
importance of each customer need. The profile shows the supplier’s strengths and weaknesses and gives a point score. The
supplier with the higher number of points is considered better qualified to manufacture these products.

To evaluate critical technology and processes, design and process failure mode and effect analyses (FMEAs) were
conducted for both suppliers’ products. To evaluate each manufacturer’s capabilities, a quality and process audit was
performed at the manufacturing site. The auditors reviewed the site and manufacturing processes for comparable products
that were identified as critical for our sensor products.

Production Wavelength Measurements
The measurement of LEDs for the SpO2 sensors at the manufacturing site is a critical and sensitive manufacturing process
step. To guarantee the accuracy of HP SpO2 measurements the wavelength of the red LED has to be within a very small
range: between 657 and 661 nm. To measure the LED wavelength a very accurate optical spectrometer is used. To obtain
repeatable measurement results, an integrating sphere is used to couple the light of the red LED into the spectrometer (see
Fig. 25).

An integrating sphere is a ball with a highly reflective surface. The light is reflected many times on the surface and becomes
diffuse. As a result, the spectrum and the intensity of an LED are the same at each point of the surface of the ball and can be
coupled easily into the spectrometer. The main advantage of this method is that tolerances in the placement of the LED are



Article 7 February 1997 Hewlett-Packard Journal      15

• Diameter Tolerances
• Surface Properties
• Cosmetic

• Tensile Strength of Strain 
Relief

• Sealing Outlines
• Withdrawal Forces
• Cosmetic
• Serial Number Printing

• Embedded Substrate with
Cable and Kevlar Fiber

• Cable Sealing within
Encapsulation

• Wire Bonding

• Gluing Process Window/
Housing Rear

• Cosmetic Requirements
• Tool Optimization

(Neonatal)

• Bending Cycles
• Wheel Test
• Exposure to Cleaning

Solvents and Bending Test
• Tear Propagation Test for 

Silicone Cable (HP M1191A)
• Bending/Torsion Test
• Noise Test, Electrical Test

• Life Cycle Test
• Bending Test
• Sealing/Spilling Test
• Withdrawal Forces
• Exposure in Saline Solution
• Tensile Strength Test
• Wheel Test
• Tensile Strength Test
• Noise Test, Electrical Test

• Temperature Cycling Test
• Push-Pull Test (Bond)
• Tensile Strength Test

(Cable Embedding)
• Exposure Test Combined

with Bending/Torsion Test
• Wavelength Test after

Exposure

• Exposure Test
• Bending/Torsion Test
• Clamping Cycles (Rear)
• Tear Propagation Test

(Pediatric)
• Wheel Test

• Dimensions/Tolerances
• Surface Properties for 

Bonding
• Mechanical/Chemical 

Robustness
• Cosmetic Requirements

• Mechanical Robustness
• Tightness
• Electrical Requirements

• Resistance to Chemicals
• Measurement Performance
• Resistance to Stress
• Tensile Strength
• Mounting of Optical 

Assemblies

• Clamping Pressure
(Clip, Pediatric)

• Resistance to Mechanical 
Stress

• Tolerances for Embedding 
Cable Sensor, Window

Key 
Customer 
Needs

Design Validation
Tests

Critical Items

Raw Cable
Sensor

Raw Cable
Adapter Interconnection

Optical
Components

Embedded
Elements

Sensor
Housing

Sensor Technical
Performance Tests

Fig. 24. Qualification tests for the new sensor family.

Optical
Spectrometer

LEDReflector

Diffuse LED Light

Current
Source

Integration Sphere

Fig. 25. Setup for LED spectral measurements.



Article 7 February 1997 Hewlett-Packard Journal      16

not critical and the repeatability is very good compared to other methods. Fig. 26 shows a typical spectrum of a red LED
measured with an integration sphere.

100

80

60

40

20

0

In
te

ns
ity

 (%
)

500 600 700 800 900 1000

Wavelength (nm)

Fig. 26. Spectrum of a red LED measured with an integration sphere.

There are different ways to measure the wavelength of an LED. One is the peak wavelength, which is the highest point of
the spectrum. The centroid wavelength, which is used in our measurements, calculates the center of the area under the
spectrum. A secondary peak in the spectrum of the LED can have a large influence on the measurement results and has to
be very small (�1%).

The temperature of the LED die has a large influence on the emitted wavelength—the higher the temperature the higher the
wavelength (0.12 nm/K). Therefore, the LED must be in thermal equilibrium. In practice, the LED takes only a few seconds
to reach thermal equilibrium. The ambient temperature must be monitored and if the temperature changes the spectrometer
must be recalibrated.

Summary
A new family of reusable pulse oximetry sensors has been developed. Based on the HP M1190A, HP’s first reusable SpO2
sensor, these sensors can noninvasively monitor the blood oxygen levels of patients, a key vital sign. They are used primarily
in operating rooms, recovery rooms, intensive-care units, and some general wards. The new sensor family covers all
application areas and consists of the M1194A clip sensor (Fig. 27), the HP M1191A adult sensor with new wavelength
(Fig. 28), the HP M1192A pediatric sensor (Fig. 12), and the HP M1193A neonatal sensor (Fig. 29).

Acknowledgments
Many people were involved in this project. The authors would especially like to thank Dietrich Rogler for the industrial
design of the sensors, Willi Keim and Peter Jansen of materials engineering for their excellent support, Martin Guenther for
performing all the optical characteristics measurements, Gerhard Klamser for verifying the algorithm, Gerhard Lenke for
organizing all the regulation tasks, and Otto Gentner for managing the clinical trials. Special thanks to Professor Dr. J. W.
Severinghaus of the University of California Hospital in San Francisco for performing volunteer studies.



Article 7 February 1997 Hewlett-Packard Journal      17

Fig. 27. HP M1194A clip sensor.

Fig. 28. HP M1191A adult sensor.

Fig. 29. HP M1193A neonatal sensor.

References
1. T.J. Hayes and E.B. Merrick, “Continuous, Non-Invasive Measurements of Blood Oxygen Levels,”

Hewlett-Packard Journal, Vol. 28, no. 2, October 1976, pp. 2-10.
2. Hewlett-Packard Journal, Vol. 42, no. 4, October 1991, pp. 6-54.
3. D. Clausing, “The House of Quality,” Business Review, May-June 1988.
4. L.P. Sullivan, “Quality Function Deployment,” Quality Progress, June 1986, pp. 39-50.

http://www.hp.com/hpj/97feb/fe97a7a.pdf
http://www.hp.com/hpj/97feb/fe97a7b.pdf
http://www.hp.com/hpj/97feb/fe97a8.htm
http://www.hp.com/hpj/journal.html


Subarticle 7a February 1997 Hewlett-Packard Journal      1

Volunteer Study for Sensor Calibration

To calibrate the new SpO2 sensor family it was necessary to adjust the relationship between the ratio measurements and the SpO2
values using data based on real blood samples from volunteers.

Fig. 1 shows the measurement environment for the calibration study. The basic instrument is a special HP Component Monitoring
System (CMS) with 16 SpO2 channels. Sixteen sensors at different application sites could be used simultaneously. To get SpO2 values
over the entire specification range of 70%�SpO2�100%, the volunteers got air-nitrogen mixtures with lowered oxygen levels—less
than 21%.

Arterial Blood
Sample

HP Component
Monitoring System
16 SpO2 Channels

Regression
Analysis

Laptop
Computer

ComputerOSM3
Oximeter Data

FilesO
xy

ge
n

N
itr

og
en

10% O2 21%

Valve

Fig. 1. Sensor calibration using volunteers and SpO2 data acquisition by a special HP Component Monitoring
System (CMS) with a maximum of 16 channels. Different SpO2 values are achieved by supplying different mix-
tures of oxygen and nitrogen. Arterial blood samples are analyzed by a Radiometer OSM3 oximeter. For each
sensor and application site, regression analysis is done, and calibrating tables are derived from the results.

Because of his great experience with such studies we used the method developed by Dr. J.W. Severinghaus of the University of
California in San Francisco. For each volunteer a maximum of 16 sensors were applied at the fingers, earlobes, and nostrils. A catheter
was placed in the left radial artery. Arterial O2 saturation was reduced rapidly by a few breaths of 100% N2. This was followed by a
mixture of air and N2 with about 4% CO2 added while the subject voluntarily hyperventilated to speed the attainment of an alveolar gas
hypoxic plateau and to provide end tidal samples for regression analysis. FiO2 was adjusted to obtain plateaus for 30 to 60 seconds at
different SpO2 levels (Fig. 2). At the end of each plateau a 2-ml arterial blood sample was obtained and analyzed by a Radiometer OSM3
multiwavelength oximeter.

The regression analysis yielded three SpO2-versus-ratio calibration curves: one for the HP M1190A adult sensor, a second for the HP
M1191A adult sensor, the HP M1192A pediatric sensor, and the HP M1193A neonatal sensor, and a third for the HP M1194A ear sensor.
The curves for the HP M1190A and M1191A are different because of their different LED wavelengths, while for the ear sensor the
application site is different— the tissue constitution of the earlobe and nostril seems to be optically very different from the other
application sites. Each calibration curve is the best least squares fit to the data points of a second-order polynomial.

Fig. 3 shows the good correlation with the reference (R2 � 0.95) in the case of the HP M1191A adult sensor. Fig. 4 shows that the
specified SpO2 accuracy is reached within the range of 70%�SpO2�100%. Fig. 5 shows that the correlation for the HP M1194A ear
sensor is not as good as for the HP M1191A. The data point distribution is also wider (Fig. 6). This is caused by a much poorer signal
quality at the earlobe than at the finger. In general the perfusion index for the ear is only about a tenth of that for the finger. Therefore, in
normal circumstances the preferred application site is the finger. In some cases, such as centralization (i.e., shock patients), the earlobe
sometimes gives better results.



Subarticle 7a February 1997 Hewlett-Packard Journal      2

in
 B

re
at

hi
ng

 A
ir 

 F
 O

   
(%

)

N
on

in
va

si
ve

ly
 w

ith
 a

 P
ul

se
 O

xi
m

et
er

  S
pO

   
(%

)

20

15

10

5

0

100

80

60

40

A
rt

er
ia

l B
lo

od
 O

xy
ge

n 
Sa

tu
ra

tio
n 

M
ea

su
re

d

2

2 FiO2 SpO2

Blood
Samples

1 �t4�t1 �t2 �t3 654320
Time t (min)

Fr
ac

tio
na

l I
ns

pi
re

d 
O

xy
ge

n 
Co

nc
en

tr
at

io
n

i

Fig. 2. Stepwise desaturation by lowering oxygen levels
leads to quasistable SpO2 levels. This condition gives

blood samples with correct blood gas values. The delay
for the SpO2 values compared to the oxygen values

comes from the circulation time for the arterial blood
from the lungs to the arm. Calibration tables are compiled
by comparing the known SpO2 values with the ratio data

measured by the CMS.

100

80

60

40

20
20 40 60 80

OSM3 SaO2 Reading (%)

2
H

P 
M

11
91

A
 S

pO
   

Re
ad

in
g 

(%
)

Fig. 3. Regression analysis for HP M1191A adult sensor SpO2
measurements after calibration. The measurements are

plotted against arterial blood SaO2 measurements from the
OSM3 oximeter. The data (206 points) is from 12 volunteers

with different oxygen saturation levels.

50
–20

–15

–10

–5

0

5

10

15

20

60 70 80 90 100

OSM3 SaO2 Reading (%)

2
2

Bi
as

   
  S

pO
   

   
 S

aO
   

(%
)

100

80

60

40

20

2
H

P 
M

11
94

A
 S

pO
   

Re
ad

in
g 

(%
)

OSM3 SaO2 Reading (%)
20 40 60 80 100

Fig. 4. Bias and standard deviation for the HP M1191A over
the specified range of 70%�SpO2�100%.

Fig. 5. Regression analysis for HP M1194A ear sensor SpO2
measurements after calibration. The measurements are

plotted against arterial blood SaO2 measurements from the
OSM3 oximeter for 12 volunteers.



Subarticle 7a February 1997 Hewlett-Packard Journal      3

–20

–15

–10

–5

0

5

10

15

20

50 60 70 80 90 100
OSM3 SaO2 Reading (%)

2
2

Bi
as

   
  S

pO
   

   
 S

aO
   

(%
)

Fig. 6. Bias and standard deviation for the HP M1194A. The standard deviation is larger
than for the HP M1191A because of the smaller perfusion values in the ear.

http://www.hp.com/hpj/97feb/fe97a7b.pdf
http://www.hp.com/hpj/97feb/fe97a7.pdf
http://www.hp.com/hpj/97feb/fe97a8.htm
http://www.hp.com/hpj/journal.html


Article 7 February 1997 Hewlett-Packard Journal      1

Neonatal Sensor Clinical Validation

In contrast to the volunteer study with adult subjects (page 1), a validation for the HP M1193A neonatal sensor had to be done with
neonates in a clinical environment. Because blood sampling is very critical for sick neonates, only when an arterial line was already in
place for therapy could we get blood sample values. Fig. 1 shows the regression line for 290 data points from 20 subjects. The
correlation (R2 � 0.91) is good considering that neonates often have oxygen saturation states that are unstable and changing rapidly. To
eliminate these uncertainties, SpO2 values with big differences before and after blood sampling (�SpO2 �5%) and with poor signal
quality (perfusion index �0.2) were not included. Fig. 2 shows that the specified accuracy of 3% SpO2 standard deviation for the range
70%�SpO2�100% has been reached for the HP M1193A sensor based on the clinical data from neonates. 

100

90

80

70

60

50

50 60 70 80 90 100
OSM3 SaO2 Reading (%)

H
P-

M
11

93
A

 S
pO

   
Re

ad
in

g 
(%

)
2

–20

–15

–10

–5

0

5

10

15

20

50 60 70 80 90 100
OSM3 SaO2 Reading (%)

2
2

Bi
as

   
  S

pO
   

   
 S

aO
   

(%
)

Fig. 1. Regression analysis with data from clinical trials with the
HP M1193A neonatal sensor. The 290 data points are derived from

20 subjects who already had an arterial line for blood sampling.
The arterial SaO2 values were measured by an OSM3 oximeter.

Fig. 2. Bias and standard deviation for the HP M1193A
neonatal sensor within the specification range of

70%�SpO2�100%, based on data from 20 neonates.

http://www.hp.com/hpj/97feb/fe97a7.pdf
http://www.hp.com/hpj/97feb/fe97a8.pdf
http://www.hp.com/hpj/journal.html


Article 8 February 1997 Hewlett-Packard Journal      1

Design of a 600-Pixel-per-Inch, 30-Bit

Color Scanner

Simply sampling an image at higher resolution will not give the
results a customer expects. Other optical parameters such as
image sharpness, signal-to-noise ratio, and dark voltage correction
must improve to see the benefits of 600 pixels per inch.

by Steven L. Webb, Kevin J. Youngers, Michael J. Steinle, and Joe A. Eccher

The objective of a scanner is to digitize exactly what is on the document that is being scanned. To do this perfectly would
require a CCD (charge coupled device) detector with an infinite number of pixels and a lens with a modulation transfer
function of 1.0, which does not exist. Modulation transfer function, or MTF, is a measure of the resolving power or image
sharpness of the optical system. It is analogous to a visual test that an optometrist would use to measure a human eye’s
resolving power.

In the real world, the scanner user does not require a perfect reproduction of the original because the human eye does not
have infinite resolving power. However, as originals are enlarged and as printers are able to print finer detail, the imaging
requirements of the scanner are increased.

The HP ScanJet 3c/4c scanner, Fig. 1, is designed to obtain very finely detailed images for a variety of color and black and
white documents and three-dimensional objects that are typically scanned. Its optical resolution is 600 pixels per inch,
compared to 400 pixels per inch for the earlier HP ScanJet IIc. It produces 30-bit color scans compared to the ScanJet IIc’s
24-bit scans, and its scanning speed is faster. The ScanJet 3c and 4c differ only in the software supplied with them. 

Fig. 1. HP ScanJet 4c 600-dpi, 30-bit color scanner.

Optical Design
The HP ScanJet 3c/4c optical system is similar to that of the HP ScanJet IIc scanner,1 with improvements to increase the
optical resolution to 600 pixels per inch. Just sampling an image at higher resolution will not give the results a customer
expects. Other optical parameters, such as MTF (i.e., image sharpness), signal-to-noise ratio, and dark voltage correction
must improve to see the benefits of 600 pixels per inch.

The major optical components are:

� Two laminated dichroic composite assemblies used for color separation

� A fluorescent lamp with a custom mixture of phosphors

� A six-element double Gauss lens

� A three-row CCD sensor that has 5400 pixels per row

� Four front-surface mirrors.



Article 8 February 1997 Hewlett-Packard Journal      2

The color separator composites, double Gauss lens, and CCD are shown in Fig. 2.

Fig. 2. Lens, CCD (charge-coupled device) detector, and color separator composites.

CCD Detector

Color Separator Composite #2
Lens

Color Separator Composite #1

0 10 20 30 40 50 55

The color separation system (Fig. 3) consists of the two dichroic assemblies and the three-sensor-row CCD. With this
method, red, green, and blue are scanned simultaneously, so only one pass is needed to scan all three colors. Each dichroic
assembly is constructed of three glass plates that are bonded to each other with a thin layer of optical adhesive. Red, green,
and blue reflective dichroic coatings are deposited onto the glass before lamination. The order of the coatings is reversed for
the second dichroic assembly. The thickness of the glass plates between the color coatings and the flatness, tilt, and
alignment are precisely controlled to ensure accurate color separation and image sharpness.

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Lens

Color Separator
Composites

CCD

Analog Flex Circuit

Red
Green

Blue

Fig. 3. The color separation method uses two dichroic assemblies (composites) and a three-row CCD.

Each color component is focused onto a CCD sensor row consisting of 5100 imaging pixels. Additional pixels are used for
closed-loop dynamic light control, dark voltage correction, and reference mark location. By having all three rows integrated
onto a single silicon chip, precise distances between the three rows are obtained. Production consistency is guaranteed by
the integrated circuit process. Each CCD pixel generates a voltage signal that is proportional to the amount of light focused
onto each pixel. The signal for each pixel is then processed and digitized. This data is sent to a computer or a printer.



Article 8 February 1997 Hewlett-Packard Journal      3

Focus Optimization for Each Color
Two dichroic assemblies are used to equalize the path lengths of the three colors. A six-element double Gauss lens is used to
focus the light onto the CCD sensors. However, the variation of the index of refraction of glass as a function of wavelength
causes two of the three colors to obtain optimum focus at different locations. This phenomenon of differential refraction
caused by wavelength dependence is best demonstrated by holding a prism up to a white light source and observing the
colors. The light spectrum is separated because the shorter wavelengths (blue) are refracted or bent more than the longer
wavelengths (red). Since lenses are made of glass that refract light of varying wavelengths at different angles, it is difficult
to have all three colors focus at the same location.

To achieve simultaneous focus for all three colors there are several possible solutions. One is to design the focusing optics
with curved front-surface mirrors only. However, these systems can be expensive, and it can be hard to correct other optical
aberrations and difficult to image enough light onto the CCD. Another possible solution is to use an achromatic doublet.
However, this type of lens can minimize chromatic aberration for only two of the three colors.

The ScanJet 3c/4c scanner optical design minimizes the chromatic aberration caused by the lens. An uncorrected optical
system is shown in Fig. 4a, and a corrected optical system is shown in Fig. 4b. Lens chromatic aberration is corrected by
adjusting the thickness of the dichroic coated plates. The path length of each color is adjusted to obtain optimum focus.

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

X4

X1
X2

Red, Green and Blue Focus
on Same Image Plane.

X3
X4

X3

X1
X2

Red, Green and Blue Focus
in Different Image Planes.

(a) (b)

Fig. 4. (a) Chromatic aberration of an uncorrected system. X1 � X2 � X3 � X4. (b) To ensure that simultaneous

focus for red, green, and blue is achieved in the HP ScanJet 3c/4c scanner, unequal path lengths are used to

compensate for the chromatic aberration of the lens. X1 � X3 and X2 � X4, but X2 � X1.

Unequal path lengths for red, green, and blue would cause color registration error across the scan region. To prevent this,
the CCD sensor row lengths are adjusted as shown in Fig. 5. Each row has the same number of pixels. However, the
center-to-center spacing (pixel pitch) is slightly larger for a small number of pixels in rows 1 and 3. The pixels with slightly
larger pitch are strategically placed to correct for the lateral chromatic aberration of the lens. This eliminates any color
registration error that would have been caused by the lens.

Row 1

Row 2

Row 3

Fig. 5. CCD row lengths are adjusted to compensate for color separator plate thicknesses.



Article 8 February 1997 Hewlett-Packard Journal      4

Optical System Layout
The lamp, lens, mirrors, color separators, and CCD are mounted into an aluminum carriage that is translated or scanned
along the length of the document. The carriage is pulled underneath the glass platen by a belt connected to a stepper motor.
The optical layout is shown in Figs. 6 and 7. Fig. 6 shows the mechanical design model of the carriage and light path. Fig. 7
shows part of the light path in more detail.

Lens Barrel

Mirror #1

Mirror #3

Color Separator AssemblyMirror #4

Mirror #2

Scan Line
Fluorescent 
Lamp

Fig. 6. Mechanical design layout of the HP ScanJet 3c/4c optical path. The light path is from the scan line to mirror

#1 to mirror #2 to mirror #3 to mirror #4 to the lens to the color separator to the CCD detector.

The optical system was designed and evaluated using a commercially available optical design program. The sensitivity of
optical tolerances such as lens centering, radii, thickness, and index of refraction were evaluated to determine the effects on
image quality. The manufacturing assembly and mounting tolerances of key optical components in the carriage assembly
were also evaluated. Image quality parameters such as MTF, color registration error, illumination uniformity, and distortion
were emphasized.

To achieve precise optical alignment, custom assembly tooling was designed and implemented to meet production goals. 

ÎÎÎ

Mirror #4
Six-Element Lens

Color Separator Assembly

Fig. 7. Ray trace of the optical path from mirror #4 to the color separator assembly (one color only).

Fluorescent Lamp Driver
The fluorescent lamp is driven by a circuit that allows the lamp current to be varied over a range of 90 to 425 milliamperes.
Since the lamp output is proportional to current, the lamp intensity is also varied.

A block diagram of the lamp driver circuit is shown in Fig. 8. The control inputs to the circuit provide the following
functions:

� PREHEAT_L allows the filaments to be heated before the lamp is ignited.

� LAMP_PWM provides a pulse width modulated signal to set the desired current level.

� LAMPON_L turns the lamp on.

The filaments of the lamp are preheated for one second before lamp turn-on to reduce the amount of filament material that
gets deposited on the insides of the glass. The deposits reduce light output, causing the light level to drop off near the ends
of the lamp. This could create a lamp profile problem if preheating were not implemented.

The LAMP_PWM signal provides the desired current level plus a sync signal to the oscillator. The switching of the lamp driver
power transistors occurs while the CCD (charged coupled device) is being reset. This helps keep switching noise from
contaminating the CCD measurements. The lamp current command is derived from LAMP_PWM via the low-pass filter. The
output of the low-pass filter is a voltage proportional to the amount of current desired.



Article 8 February 1997 Hewlett-Packard Journal      5

+
–

+
–

Loop
Compensator

Power
FET

2

Power
FET

3

Power
FET

4

Power
FET

5

Power
FET

1

Fluorescent
Lamp

24 V

T1

T2

T

PRE

CLR

Divide
by 2

Q

Q

Low-
Pass
Filter

QR Flip-
Flop

S1

S2

One-
Shot

Q

R

Oscillator
Pulse

Ramp

24 Volts

LAMPON_L

LAMP_PWM

PREHEAT_L

50 �H

Analog ASIC

Amplifier 3

Comparator

Amplifier 2

Amplifier 1

Fig. 8. Block diagram of the fluorescent lamp driver.

The LAMPON_L signal holds the flip-flop in the set mode until it is time to turn the lamp on. When the flip-flop is set, power
FET 1 is held off via the buffer.

Operation of the lamp driver begins by taking PREHEAT_L to a logic zero. This allows the divide-by-2 circuit to begin toggling.
When PREHEAT_L is high, both Q and Q are high, which turns off power FETs 4 and 5 via the inverting buffers. The toggling of
the divide-by-2 circuit drives power FETs 4 and 5 out of phase. This provides a 24-volt square wave on the primary of T1
which is stepped down to 3.6V to drive the filaments. When LAMPON_L is activated, the flip-flop is reset on the next LAMP_PWM
pulse, turning on power FET 1. The lamp appears as a high impedance in the off state, which results in power FETs 2 and 3
avalanching as a result of collapsing magnetic fields. The avalanche voltage of the power FETs is approximately 120 volts,
half of which, or 60V, appears at the center tap of T1. This voltage is multiplied by the 1:6 turns ratio of T1 to produce 360V
across the lamp. This voltage starts the lamp and the voltage drops to the low forty volt range. Current now flowing in the
lamp is reflected back to the primary, where it is sensed. Amplifier 3 amplifies the voltage across the sense resistor and
amplifier 2 subtracts it from the current command (output of amplifier 1).

The output of amplifier 2 is passed through the loop compensator (proportional plus integral) and applied to the comparator.
The oscillator output is applied to the other input to the comparator. In the steady state, the loop compensator will stabilize
at a voltage that produces the proper duty cycle on power FET 1 to maintain the commanded current. At this time the
voltage across the 50-µH inductor will be in volt-second balance.*

All of the low-power analog and digital circuits are contained in an analog ASIC.

* The voltage across the inductor switches from positive to negative as the FET turns on and off. When the product of the positive voltage and its duration
equals the product of the negative voltage and its duration, the inductor voltage is in volt-second balance.



Article 8 February 1997 Hewlett-Packard Journal      6

Firmware Design
The firmware inside the ScanJet 3c/4c has many tasks. Two of the most critical (and most interesting to work on) were the
start-stop algorithm and the light control algorithms.

Start-Stop. During some scans the host computer’s I/O rate may not be able to keep up with the scanner’s data generation
rate. This will cause the internal buffer in the scanner to fill. When this occurs the scanner may need to stop and wait for the
host to catch up (empty the internal buffer) before restarting the scan. This is called a start-stop. The scanner must restart
the scan in the same place that it stopped or the user will see artifacts in the final image. If the scanner’s drive system can
start and stop within a fraction of the y-direction sampling size then no repositioning is needed. If the scanner’s drive system
cannot stop or start fast enough then it must back up and reposition the scan bar to be able to restart at the correct location
(see Fig. 9). 

Buffer Full
(Restart Scan)

Sc
an

ne
r H

ea
d 

Sp
ee

d

Scanner Head Position

Note: Adjacent lines are on
top of each other; shown this
way for clarity.

Fig. 9. Start-stop profile.

The ScanJet 3c/4c uses variable-speed scanning in the y-direction (along the length of the scan bed). Variable-speed scanning
has two main advantages: better y-direction scaling and fast scan speeds at low resolution. The ScanJet3c/4c has a wide
range of scan speeds (20 to 1), so the drive system needs some acceleration steps (of the stepper motor) to reach most of
the final scanning speeds. This also means that the drive system cannot start or stop in one step. This dictated the need for
a reposition movement for each start-stop.

There are three parts to a start-stop. First, when the internal buffer becomes full, the firmware marks the position and time
of the last scan line and stops the drive system. Second, the firmware calculates how far to back up and then backs up and
stops. Third, when there is enough space in the internal buffer the firmware accelerates the drive system up to the correct
scanning speed and then restarts the scan line at the correct scan position.

The scanner firmware controls the step rate of the drive system. It uses its internal timer with a hardware interrupt to
control the time between steps precisely. During acceleration, the firmware gets the next time interval from the acceleration
table. Once at the proper scanning speed, the time interval is constant and the firmware just reloads the timer with the same
interval. Deceleration uses the same table as acceleration in the reverse order. The firmware also keeps track of how many
motor steps have occurred. Each motor step represents 1/1200 inch of travel for the scan head. This allows the firmware to
keep track of the location of the scan head.

The scanner firmware also keeps track of when each scan line occurs (relative to a motor step). The scan lines are spaced
4.45 ms apart (for normal speed). A scan line may coincide with a motor step or may be between two motor steps, depending
on the y-direction scan resolution). For example, for a 600-dpi scan there are exactly two motor steps for each scan line 
(2 � 1/1200 = 1/600, so the scan head moves 1/600 inch in 4.45 ms). For a 500-dpi scan there would be 2.4 motor steps for
each scan line.

When restarting the scan, the firmware must restart the CCD at least seven scan lines before putting scan data into the
buffer. This is to allow the CCD to flush any extra charge in the system caused by restarting the CCD. The number of motor
steps for seven scan lines depends on the y-direction scanning resolution. The number of steps to accelerate also depends on
the y-direction scanning resolution. There is also a minimum number of steps that the drive system must be backed up to
remove any mechanical backlash. These requirements determine the number of steps the scan head must be backed up (see
Fig. 10). Once this is determined the firmware backs up the scan head and waits for the host to remove enough data from the
internal buffer.

The internal buffer capacity inside the 3c/4c scanner is 256K bytes. Under the DOS operating system a typical receive block
is 32K bytes (it can be larger). The ScanJet 3c/4c will restart a scan when the buffer is half full or holds less than twice the
current receive block size, whichever is less.

Once there is enough space in the buffer the firmware restarts the scan. First, the scan head is accelerated up to the final
scanning speed. A hardware interrupt is programmed to restart the CCD exactly seven scan lines before the position at
which the last scan line was put into the buffer. Then, half a scan line away from the restart position, the buffer is reenabled
such that the next line is put into the buffer. At this point the scan has been restarted and the start-stop is completed.



Article 8 February 1997 Hewlett-Packard Journal      7

A

Scan Line
4.45 ms

Sync Time

Sync Position

Resync CCD

Motor Step Time at Scanning
Speed (Dependent on Resolution)

Saved Motor Step Number

Saved Scan Time

Buffer Reenabled

Buffer Full
(Restart Scan)

Motor Steps

Fig. 10. Start-stop timing.

A 7 Scan Lines

The start-stop accuracy of the ScanJet 3c/4c scanner is specified at half the y-direction scanning resolution. The typical
resolution is between one-eighth and one-quarter pixel at the normal speed.

Light Control. The lamp in the ScanJet 3c/4c scanner is a special triphosphor fluorescent bulb. Using a fluorescent bulb has a
number of trade-offs. The good news is that fluorescent bulbs have a range of phosphors to choose from. This allows the
designer to balance the light spectrum with filters to give good colorimetric performance. The three phosphors in the
ScanJet 3c/4c scanner give off red, green, and blue light. Florescent bulbs are also efficient, and give a reasonable amount
of light for the energy used.

The bad news is that the intensity of the light is dependent on the bulb temperature. This means that as the bulb heats up the
light gets brighter. If the bulb gets too hot, then the light gets dimmer again. What is worse, the bulb does not heat evenly
across its length. The ends heat first and fastest and then the center of the bulb slowly heats up. The phosphors also have
different efficiency-versus-temperature characteristics. This means that as the bulb heats up, it shifts color. At some nominal
temperature, and only at that temperature, the phosphors are at their design efficiency, and the light is balanced with the
filters. What makes this really bad is that the time it takes to complete a scan can vary between 15 seconds and 5 minutes.
Fluorescent bulbs also have a long-term aging effect—a decrease in efficiency that affects performance—and the phosphors
we have chosen age at different rates.

One solution to some of these problems is to leave the light on all the time. Then the bulb is at one stable temperature for the
full scan. This solution has its own set of problems. For example, the bulb needs to be customer replaceable and the power
consumption of the unit is high during idle time.

The ScanJet 3c/4c solves some of these problems with a real-time control system that controls the output of the light by
modifying the power into the bulb during a scan. It also has separate red, green and blue system gains that are adjusted each
time the light is turned on to help balance the overall color of the system. The light control system in the ScanJet 3c/4c uses
the same CCD that is used for scanning. The CCD is wide enough so that it can look beyond the document being scanned at
a white strip that runs along the length of the scan bed underneath the scanner top cover. This area of the CCD is called the
light monitor window.

The light control algorithm for the ScanJet 3c/4c scanner has three parts. Part one turns on the power to the lamp and waits
until some minimum level of light is detected. Part two tries to balance the output of the red, green, and blue channels by
adjusting the independent system gains. Part three adjusts the power to the lamp to keep the green output at a fixed value
during the scan. The purpose of part one of the lamp control is to turn the lamp on and make sure it is fluorescing at some
minimum level. The goal for the startup algorithm (part two) is to have the lamp bright enough to scan with low system
gains, which helps maximize the signal-to-noise ratio. The purpose of part three is to maintain the lamp at a given level for
the entire scan.

Part one first sets the red, green, and blue gains to a low level. Then it turns on the preheaters (the coils at each end of the
lamp) for about one second. It then turns on the lamp power, which is controlled by a pulse width modulation signal, to 20%
for 4.5 ms and then to 80%. The first step at 20% is to help prevent the power supply from ringing. Once the lamp power is at
80% the control loop monitors the lamp output using the light monitor window. When the output of the lamp reaches or
exceeds the minimum threshold, part two of the control algorithm starts. If the threshold is never reached the control loop
will time out with an error (after about 5 minutes).

Part two of the algorithm waits about one second for the lamp to warm up (at 80% power). After the warmup delay the lamp
power is lowered to 50% and the red, green, and blue system gains are adjusted. In the ScanJet 3c/4c there are two light
monitor windows. One always reads the green channel’s output, and the other reads either the red channel or the blue
channel. The gain control loop adjusts the level of each system gain and tries to make the output of the light monitor window
match a set value called the desired value. The window output is checked against the desired value on each end-of-scan-line
interrupt, or every 4.45 ms. When the output of the green light monitor window matches its desired value (within some
margin) 200 times in a row, the gains are considered stable and the green gain is fixed at its current value. If the control loop



Article 8 February 1997 Hewlett-Packard Journal      8

is unable to match the desired values by adjusting the gains, that is, the gains are at maximum or minimum values, it times
out. The green gain is then fixed at slightly above the minimum value or slightly below the maximum value (to give the red
and blue gains some margin).

Once the green gain has been fixed, the control loop switches from controlling the gains to controlling the power to the
lamp. This is part three of the light control algorithm. The lamp power control loop uses only the green channel. It uses an
eight-line running average to damp the control loop. If the control loop sees a difference of one count for eight lines or eight
counts for one line between the light monitor window and the desired value, it changes the lamp power by one count. When
the control switches from the gains to the lamp power, there is a short delay to load the eight-line average used in the lamp
power control loop. After the short delay, the output of the green light monitor window is compared to its desired value, and
if they match (within some margin) 200 times in a row, the light is considered stable and the scan is allowed to start. During
this stabilization period the red and blue gains are being controlled. Once the light is considered stable the red and blue gains
are fixed. The control loop for the lamp power using the green channel continues to operate during the scan. If the light fails
to match the desired output 200 times in a row, the scanner will time out with a lamp error. Once the scan has started, if the
control loop is unable to keep the output of the green light monitor window within some tolerance of its desired value, a
lamp error is issued.

RFI and ESD Design
The ScanJet 3c/4c color scanner was a challenging design with respect to RFI (radio frequency interference) and ESD
(electrostatic discharge). To begin with, the mechanical design didn’t lend itself to stellar RFI and ESD performance. In an
attempt to lower cost and weight, the design specified a plastic chassis instead of a sheet-metal chassis. Secondly, the design
spread key electrical systems throughout the scanner. For example, the controller board was positioned in the lower rear of
the product. The controller board clock is derived from a 36-MHz crystal oscillator. It generates the CCD clocks, motor
control signals, and lamp control signals, processes all of the image data, and controls the SCSI interface. It also controls the
optional automatic document feeder or the optional transparency adapter. Not only is the controller board a source of a lot
of RF energy, it also has multiple interconnections that increase the difficulty of containing that RF energy. The controller
board connects to the power supply, to the carriage, to the SCSI interface, and to any optional accessory.

Another key electrical system is the power supply assembly. Besides generating �5V, �24V, �12V, and �12V, the power
supply assembly also contains the lamp and motor drivers. It has a total of five cable connections including the ac power
cord, the dc power cable to the controller board, the lamp cable, the motor cable, and the LED power-on indicator cable (see
Fig. 11).

The third key electrical system is the carriage, which has characteristics that dominate the scanner’s basic EMC
(electromagnetic compatibility) performance. The carriage is a metal casting that rides on two steel guide rods. The steel
guide rods are held in place by a sheet-metal plate in the rear and by the plastic chassis in the front. A fluorescent lamp is
mounted on the carriage and is connected through its own dedicated cable, the lamp cable, to the lamp driver in the power
supply. The lamp cable is about 15 inches long and travels along the right side of the scanner as the carriage moves under the
glass window. The imaging flex circuit is a two-layer circuit that is wrapped around the outside of the CCD and is connected
through the carriage cable to the controller. It is located in the left rear of the carriage. The carriage cable is a single-layer
unshielded flexible cable that carries CCD clocks, which can run at speeds over 1 MHz, to the imaging circuit from the
controller board. This cable also returns the resulting analog image data. The carriage cable, which is about 25 inches long,
travels along the left side of the scanner as the carriage is in motion (see Fig. 11).

The carriage is a source of energy from the imaging circuit. It is also an antenna whose electrical length changes with the
position of the carriage. At least three different electrical structures change as the carriage moves from the back of the
scanner to the front. These include the carriage cable, the lamp cable, and the current path through the steel guide rods and
the carriage. Because of this dynamic antenna structure, the radiating efficiency for any specific frequency will be optimized
at one corresponding specific position of the carriage over its range of travel. One can think of it as a “self-tuning” antenna.
Typical RFI control approaches that merely retune energy from one frequency to another simply do not work because the
new frequency to which the RF energy is shifted will just correspond to a different carriage position at which the antenna
efficiency is optimized for that frequency.

A number of RFI suppression techniques were considered. Putting a Faraday cage around the whole scanner was, of course,
impossible because the top needed to be glass. Trying to enclose all the electronics and shield all of the cables also proved
futile. Enclosing the controller board only seemed to make things worse. Using power and ground islands didn’t help.
Ferrites didn’t seem to have a lot of impact, and extrapolating their performance, we estimated that RFI might only decrease
by 5 dB if the box were completely filled with ferrite. Using capacitors to roll off clock or clock-like signals only seemed to
increase emissions below 300 MHz.

We decided that the best approach to keeping RFI emissions down was to reduce all possible sources as much as possible.
We needed to minimize the energy that got onto the carriage structure, because any energy that got there would be radiated
efficiently at some point in the carriage’s travel. We began to work on some new approaches that were guided by theory and
that we later confirmed with experiment. First of all, we revisited the equation that describes the radiation from a current
loop. Because this radiation is proportional to the product of the frequency squared, the current, and the loop area, we tried
to minimize the areas of current loops and to minimize the current in those circuits with series impedance. Because we did



Article 8 February 1997 Hewlett-Packard Journal      9

Lamp

Carriage

Controller Board

Power
Supply

LED Power-On
Indicator Cable

Motor
Cable

Motor

Carriage Cable
Lamp
Cable

SCSI Connectors

Accessory Connector

AC Receptacle

LED

Front

Fig. 11. Scanner internal layout showing key components for RFI design.

not want energy traveling onto the self-tuning antenna, we purposely tried to mismatch cable impedances so that most of the
energy would be reflected back onto the controller board rather than traveling out onto the carriage cable. To do this,
grounding and shielding needed to be minimized. This meant doing things that were just the opposite of what would
normally be done. Instead of routing the carriage cable close to metal, it was raised away from any metal to increase its
effective transmission line impedance. Although the carriage cable became a better antenna, far less high-frequency energy
was able to get onto that antenna because of the impedance mismatch.

ESD also required an unusual approach. Initially, the scanner was highly susceptible to static discharges. An air discharge of
only 1 kV would usually cause the SCSI bus to hang even if there was no data transfer in progress. This problem was
ultimately improved by over an order of magnitude by the inclusion of a part affectionately known as the BMP or big metal

plate. The BMP is simply the flat metal plate that is affixed to the bottom of the scanner. Its exact physical dimensions turn
out to be relatively unimportant because it doesn’t perform its function through any shielding or plane imaging phenomenon.
It is attached to the SCSI cable shield and merely serves as a huge charge sink. The BMP could be connected to the SCSI
shield without regard to three-dimensional position and it would always improve the ESD air discharge performance to over
10 kV, even while data was being transferred over the SCSI interface.

The ScanJet 3c/4c also inspired an interesting solution to a common ESD/RFI problem. Often, different methods of
connecting the chassis to dc ground will have different effects on RFI and ESD. In the ScanJet 3c, if the chassis was
connected directly to dc ground at the SCSI connectors, ESD performance was improved. However, if chassis ground wasn’t
connected at all to dc ground except in the power supply, RFI was improved. In the end, by connecting chassis ground to dc
ground through parallel diodes oriented in opposite directions (see Fig. 12), good performance for both RFI and ESD was
achieved.



Article 8 February 1997 Hewlett-Packard Journal      10

Chassis
Ground

DC Board
Ground

Fig. 12. Diode connection for ESD and RFI suppression.

Acknowledgments
The authors would like to acknowledge the contributions of the following individuals to the design of the HP ScanJet 3c/4c
scanner: Bob Emmerich, Ray Kloess, Greg Degi, Irene Stein, Nancy Mundelius, Dave Boyd, Kent Vincent and Hans Neumann
of HP Laboratories, project managers Gerry Meyer and Gordon Nuttall, section manager Jerry Bybee, and R&D manager
Dean Buck. 

Reference
1. K.D. Gennetten and M.J. Steinle, “Designing a Scanner with Color Vision,” Hewlett-Packard Journal, Vol. 44, no.

4, August 1993, pp. 52-58.

http://www.hp.com/hpj/97feb/fe97a8a.pdf
http://www.hp.com/hpj/97feb/fe97a9.htm
http://www.hp.com/hpj/journal.html


Article 8 February 1997 Hewlett-Packard Journal      1

Sing to Me

The HP ScanJet 3c/4c scanner uses variable y-direction scanning. This means that the scan head travels at different speeds dependent
on the y resolution. This also means that the stepper motor runs at variable frequencies.

Musical notes are air vibrations at given frequencies. Play Tune (Esc*u0M) is an SCL (Scanner Control Language) command that can be
used to make the scanner play any song downloaded into its buffer. The song can be loaded into the scanner’s internal buffer using the
SCSI write buffer command. The format for the song is: number of notes (2 bytes), note one, note two, etc. Each note is three bytes. All
numbers are in hexadecimal format.

The first two bytes of each note specify the number of 3-MHz clock cycles between full motor steps for the desired speed. The third byte
is the note duration in multiples of approximately 1/8 second. For example, middle C is 256 Hz. The clock frequency is 3 MHz, and the
motor half-steps. For middle C, therefore, 3,000,000 clocks per second ��1/256 second per full step�1/2 full step per half step  =  5859
clocks per full step, which in hexadecimal is 16E3. For the third byte, a 4 would move the motor for 1/2 second (4/8  = 1/2). Thus, to get the
scanner to play a 1/2-second middle C, the number to download is 16E3, 4.

For a rest between notes, set the frequency to zero and the duration to the desired length of the rest. When playing notes, the scan head
always moves towards the center of the scanner and any frequency above the maximum scan rate of the scanner is truncated to the
maximum scanning speed. This gives the ScanJet 3c/4c a three-octave range with the lowest note at about D below middle C.

Here is a well-known tune by Mozart (don’t download the spaces or commas):

02f
16E3,6 16E3,6 0f47,6 0f47,6 0d9c,6 0d9c,6 0f47,9 00,2 
1125,6 1125,6 122a,6 122a,6 1464,6 1464,6 16E3,9 00,2 
0f47,6 0f47,6 1125,6 1125,6 122a,6 122a,6 1464,9 00,2 
0f47,6 0f47,6 1125,6 1125,6 122a,6 122a,6 1464,9 00,2 
16E3,6 16E3,6 0f47,6 0f47,6 0d9c,6 0d9c,6 0f47,9 00,2 
1125,6 1125,6 122a,6 122a,6 1464,6 1464,6 16E3,9

http://www.hp.com/hpj/97feb/fe97a9.htm
http://www.hp.com/hpj/97feb/fe97a8.pdf
http://www.hp.com/hpj/journal.html


Article 9 February 1997 Hewlett-Packard Journal      1

Building Evolvable Systems: The ORBlite

Project

One critical requirement that HP has learned over the years from
building large systems is the need for the system and its
components to be able to evolve over time. A distributed object
communication framework is described that supports piecewise
evolution of components, interfaces, communication protocols, and
APIs and the integration of legacy components.

by Keith E. Moore and Evan R. Kirshenbaum

Hewlett-Packard has been building distributed and parallel systems for over two decades. Our experience in building
manufacturing test systems, medical information systems, patient monitoring systems, and network management systems
has exposed several requirements of system and component design that have historically been recognized only after a
system has been deployed. The most critical of these requirements (especially for systems with any longevity) is the need
for the system and system components to be able to evolve over time.

The ORBlite distributed object communication infrastructure was designed to meet this requirement and has been used
successfully across HP to build systems that have evolved along several dimensions. The ORBlite framework supports the
piecewise evolution of components, interfaces, communication protocols, and even programming APIs. This piecewise
evolution enables the integration of legacy components and the introduction of new features, protocols, and components
without requiring other components to be updated, ported, or rewritten.

A vertical slice through the ORBlite framework forms the basis of HP’s ORB Plus product, a strict implementation of the
CORBA 2.0 standard.

The Problem of Evolvability
By definition, a distributed system is one that contains components that need to communicate with one another. In most
practical systems, however, many of these components will not be created from scratch. Components tend to have long
lifetimes, be shared across systems, and be written by different developers, at different times, in different programming
languages, with different tools. In addition, systems are not static—any large-scale system will have components that must
be updated, and new components and capabilities will be added to the system at different stages in its lifetime. The choice of
platform, the level of available technology, and current fashion in the programming community all conspire to create what is
typically an integration and evolution nightmare.

The most common solution to this problem is to attempt to avoid it by declaring that all components in the system will be
designed to a single distributed programming model and will use its underlying communication protocol. This tends not to
work well for several reasons. First, by the time this decision is reached, which may be quite early in the life cycle of this
system, there may already be existing components developers desire to use, but which do not support the selected model or
protocol. Second, because of the availability of support for the model, the choice of model and protocol may severely restrict
other choices, such as the language in which a component is to be written or the platform on which it is to be implemented.

Finally, such choices tend to be made in the belief that the ultimate model and protocol have finally been found, or at least
that the current choice is sufficiently flexible to incorporate any future changes. This belief has historically been discovered
to be unfounded, and there does not appear to be a reason to believe that the situation has changed. Invariably, a small
number of years down the road (and often well within the life of the existing system), a new “latest-and-greatest” model is
invented. When this happens, the system’s owner is faced with the choice of either adhering to the old model, which may
leave the system unable to communicate with other systems and restrict the capabilities of new components, or upgrading
the entire system to the new model. This is always an expensive option and may in fact be intractable (e.g., one HP test
system contains an investment of over 200 person-years in legacy source code) or even impossible (e.g., when the source
code for a component is simply not available).

An alternative solution accepts the fact that a component or set of components may not speak the mandated “common
protocol” and instead provides proxy services (protocol wrappers or gateways) between the communication protocols.
Under this scheme, the communication is first sent to the gateway which translates it into the nonstandard protocol and
forwards it on to the component. This technique typically gives rise to the following issues:



Article 9 February 1997 Hewlett-Packard Journal      2

Issue Typical Cause

Degraded perfor-
mance

Message forwarding

Resource use Multiple in-memory message
representations

Reliability The introduction of new messages
and failure conditions

Security, location,
configuration, and
consistency

Disjoint mechanisms used by
different communications 
protocols

It is tempting to think that the problem of evolvability is merely a temporary condition caused by the recent explosion in
the number of protocols (and things will stabilize soon) or that the problem is just an artifact of poor design in legacy
components (and won’t be so bad next time). It appears, however, that this problem of protocol evolution is intrinsic
in building practical distributed systems. There will always be protocols that are claimed to be better, domain-specific
motivations to use them, and legacy components and protocols that must be supported. Indeed, we consider it a truism
that nearly any real distributed system will have at least three models: those of legacy components, the current standard,
and the emerging latest-and-greatest model. The contents of these categories shift with time—today’s applications and
standard protocols will be tomorrow’s legacy.

Dimensions of Evolution
The ORBlite architecture is concerned with multiple dimensions of evolution.

Evolution of Component Interface. A component’s interface may evolve to support new features. The danger is that this
evolution will require all clients of the component to be updated. For reasons cited in the previous section, there must
be a mechanism whereby old clients can continue to use the old interface and new clients can take advantage of the new
features.

Evolution of Component Implementation. A component’s implementation may evolve independently of the rest of the system.
This may include the relocation of a component to a new hardware platform or the reimplementation of a component in
a new programming language. There must be a mechanism that insulates other components from these changes in the
implementation yet maintains the semantic guarantees promised by the interface.

Evolution of Intercomponent Protocol. It is generally intractable to choose a single communication protocol for all components
in the system. Different protocols may be more attractive because of their performance, availability, security, and suitability
to the application’s needs. Each communication protocol has its own model of component location, component binding, and
often data and parameter representation. It must be possible to change or add communication protocols without rendering
existing components inaccessible.

Evolution of Intercomponent Communication Model. The programming models used to perform intercomponent communication
continue to evolve. They change over time to support communication of new types of data and new version communication
semantics. At the same time, new programming models are frequently developed. These models are attractive because of
their applicability to a particular application, because of their familiarity to programmers on a particular platform, or
because they are merely in fashion or in corporate favor. It must be possible to implement components to a new model or a
new version of an existing model without limiting the choice of protocols to be used underneath. It must also be possible to
do so without sacrificing interoperability with existing components written to other models or other versions of the same
model (even when those components will reside in the same address space).

Contribution of Distributed Object Systems
Distributed object systems such as the Object Management Group’s CORBA (Common Object Request Broker
Architecture)1,2 and Microsoft’s  OLE (Object Linking and Embedding),3 like the remote procedure call models that
preceded them, address the issue of protocol evolution to a degree by separating the programming model from the details of
the underlying protocol used to implement the communication. They do this by introducing a declarative Interface Definition
Language (IDL) and a compiler that generates code that transforms the protocol-neutral API to the particular protocol
supported by the model (see Fig. 1). As the protocol changes or new protocols become available, the compiler can be
updated to generate new protocol adapters to track the protocol’s evolution. These adapters are shown as stubs and
skeletons in Fig. 1.

Another benefit of IDL is that it forces each component’s interface to be documented and decouples a component’s interface
from its implementation. This allows an implementation to be updated without affecting the programming API of clients and
simplifies the parallel development of multiple components.



Article 9 February 1997 Hewlett-Packard Journal      3

Caller RPC Protocol Target

IDL
Compiler

interface Professor {
     Department dept();
     sequence<Students> advises();
};

St
ub

Sk
el

et
on

Fig. 1. Generating stubs and skeletons from IDL. The stub and skeleton serve as

software protocol adapters, which can be updated as a protocol evolves.

In CORBA and OLE, interfaces are reflective—a client can ask an implementation object whether it supports a particular
interface.* Using this dynamic mechanism, a client can be insulated from interface and implementation changes. Clients
familiar with a new interface (or a new of an existing interface) ask about it, while old clients restrict themselves to using
the old interface.

While such systems abstract the choice of communication protocol, none addresses the situation in which a system needs to
be composed of components that cannot all share a single protocol or a single version of a protocol.** CORBA and OLE have
each defined a protocol that they assert all components will eventually adopt. For reasons cited above, we feel that each is
merely adding yet another (incompatible) protocol to the mix—a protocol that will continue to evolve.

Key Contributions of ORBlite
The ORBlite distributed object-oriented communication framework was designed with these concerns in mind. It takes the
protocol abstraction provided by IDL a step further by allowing a single component to be accessed and to communicate over
multiple protocols and multiple versions of the same protocol, simultaneously and transparently. Centered around the notion
of the declarative interface, ORBlite also provides for different components to be written to different models, even when the
components reside in the same process. The result is that programmers are presented with the illusion of the entire system
adhering to their processing model regardless of whether this is true or in fact whether the component at the other end is
even implemented using the ORBlite framework. It further enforces the notion that programming models and protocols have
no knowledge of one another with respect to either existence or implementation, allowing the programmer complete
freedom to mix and match.

ORBlite departs from the traditional client/server model by treating caller (client) and target (server) as merely roles
relative to a particular call. Any process can contain objects that act as both callers and targets at different times or even
simultaneously. Thus, ORBlite is fundamentally a peer-to-peer model even though a particular system may elect to follow
a strict client/server distinction.

The main goal of the framework is to provide an efficient, thread-safe communication substrate that allows systems to be
composed of components whose protocols, language mappings (i.e., object models), implementations, clients, interfaces,
and even interface definition languages can evolve independently over time. It must be possible for protocols to evolve or be
added without requiring recompilation of components, for object models to evolve without obsoleting existing components
(or existing protocols), and for legacy components to be integrated without requiring reengineering. The reality of systems
development is that components have different owners, different lifetimes, and different evolutionary time frames.

One further contribution of the ORBlite framework is that it treats local and remote objects identically. In most current
systems, the syntax for a call to a remote object is quite different from a call to one located in the same process. As a result,
once code has been written with the assumption that a particular object is local or remote, this decision becomes difficult to
change. ORBlite, by contrast, encourages the programmer to talk in terms of distributable references (i.e. references to
objects that may be local or remote), even when the referenced object is believed at coding time to be coresident.
Application code that uses a distributable reference will not need to be changed if the referenced object is later moved
to a remote process. The framework provides extremely efficient dispatching for calls when the object is detected to be
coresident. The use of distributable references allows the assignment of objects to processes to be delayed well past coding
time and to be adjusted based on performance or other requirements.

* In CORBA C++ this is a dynamic _narrow() mechanism. In OLE it is the IUnknown::QueryInterface() mechanism.

** The term protocol in this article refers to more than just the transport protocol. For example, the DCE protocol supports multiple string-binding handles so
that objects can be accessible over connectionless and connection-based transports. However, programs based on the DCE RPC model cannot trans-
parently communicate with programs based on the ONC RPC model.



Article 9 February 1997 Hewlett-Packard Journal      4

The ORBlite Communication Framework

The ORBlite communication framework contains a core and three key abstraction layers: the language mapping abstraction
layer, the protocol abstraction layer, and the thread abstraction layer (see Fig. 2). The core is responsible for behavior that is
not specific to any particular protocol or language mapping. This includes the management of object references and the
lifetime of target implementations, the selection of the protocol to use for a particular call, and the base data types used by
the protocols and the language mappings to communicate.

??? DCE CIOP

Language Mapping Abstraction Layer
• Allows Different Programming 

Models, APIs, and Data 
Representations

Protocol Abstraction Layer
• Multiple Simultaneous Protocols
• Transparent Protocol Replacement

Thread Abstraction Layer
• Allows Code to Be Independent 

of Threading Mechanism
IIOP

ORBlite CORE

Protocols

Thread Library

OMG API OLE API HPL API

MyCode

Fig. 2. An overview of the ORBlite architecture.

Language Mapping Abstraction Layer
This layer is designed to support evolution of the programming model presented to the application. Using the language
mapping abstraction layer, each component views the rest of the system as if all other components (including legacy
components) followed the same programming model. An OLE component, for example, views remote CORBA components
as if they were OLE components, and a CORBA component views remote OLE components as if they were CORBA
components.* This abstraction layer allows components to follow multiple programming models even when the components
are located in the same address space.

Protocol Abstraction Layer
This abstraction layer is designed to support the evolution of protocols and the choice of protocol sets available in a
particular system. In addition, it decouples the in-memory representation expected by a particular language mapping from
the protocol used to communicate between components on a given call. For example, implementations of DCE RPC assume
that the in-memory image for a structure has a particular memory alignment and member ordering. ONC RPC, on the other
hand, has a different assumption about how memory should be layed out.4,5 The protocol abstraction layer allows a given
language mapping to transparently satisfy both without restricting its own layout decisions.

The protocol abstraction layer provides several features:

� Support for multiple simultaneous communication protocols—services can be shared across communication
protocols and components can interact with objects simultaneously over multiple protocols.

� Support for transparent protocol replacement—one protocol can be replaced with another protocol without
any change to application code. Available protocols are declared at link time or are dynamically loaded. No
recompilation is necessary to change the available protocol set.

� Support for legacy integration—the framework does not need to be on both sides of the communication
channel. Each protocol has full control over message representation, enabling a protocol to be used to
communicate with non-ORBlite components.

� Support for multiple in-memory data representations—applications can choose the in-memory representation
of data structures without incurring copy penalties from the protocols.

* The mapping between CORBA and OLE was standardized by OMG and is detailed in reference 3.



Article 9 February 1997 Hewlett-Packard Journal      5

Thread Abstraction Layer
This layer is designed to provide a portability layer such that components can be written to be independent of
platform-specific threading mechanisms. The thread abstraction layer also serves to coordinate the concurrency
requirements of the various protocol stacks. When a protocol can be written in terms of the thread abstraction layer, it can
coexist with other communication protocols in the same process. All parts of the ORBlite framework are written in a
thread-safe

and thread-aware manner. The framework manages object lifetimes to ensure that multiple threads can be exploited and
simultaneous calls can be executing safely in the infrastructure and in each object.

These three abstraction layers are strongly interrelated. A protocol that obeys the protocol abstraction layer will typically
use the language mapping abstraction layer to marshal and unmarshal data structures. A language mapping, such as the
OMG C++ mapping, will in turn use the protocol abstraction layer to allow the protocol to marshal the structure in the
protocol’s preferred representation.

Conceptual Overview of an ORBlite Call
In ORBlite, there are six major pieces involved in a distributed call. These pieces are shown in Fig. 3. In systems
that include legacy components, two of these pieces might be purely conceptual. A legacy server might not have a
discernible skeleton or an identifiable implementation, yet will honor the wire protocol. Likewise, a legacy client may not
have a real stub.

Caller
RPC Protocol

Target

Sk
el

et
on

Transmittable Types

St
ub

Fig. 3. The pieces involved in a distributed call.

The ORBlite model is similar to the CORBA and OLE models, except that in ORBlite an IDL compiler, for a given language
mapping, emits stubs, skeletons, and types that are protocol-neutral. ORBlite further allows the caller and stub to follow a
different language mapping from the skeleton and implementation.

Stub. The stub is responsible for turning a client-side, language-mapping-specific call of the form:**

     ���result = object.foo(a,b,c);

into the protocol-neutral form:

       �� � �ORBlite::apply(object, ”foo”, arglist);

Essentially, the stub is saying to the ORBlite core, “invoke the method named “foo” on the implementation associated with
object using the list of arguments in arglist.”

Skeleton. The skeleton is primarily responsible for the reciprocal role of turning a call of the form:

      �� � �ORBlite::apply(object, ”foo”, arglist);

back into a call of the form:

      �� � �result = impl.foo(a,b,c);

The stub can be viewed as the constructor of a generic call frame. The skeleton can be viewed as a call-frame dispatcher.

** The examples here use C++ syntax. The actual call syntax is a property of the language mapping. Also, note that the internal calls described here have
been simplified.

St
ub

Sk
el

et
on



Article 9 February 1997 Hewlett-Packard Journal      6

Transmittable Types. A language mapping defines one or more in-memory data representations or classes
for each type (e.g., structure, union, interface, any,* etc.) describable in its IDL. For such data to be
passed to a protocol, it must inherit from an ORBlite-provided base class TxType. Such classes are called

transmittable types and support methods that allow protocols to request their instances to marshal themselves or to
unmarshal themselves from a marshalling stream.** Occasionally, a language mapping may have a specification that
precludes the types presented to the programmer from inheriting from TxType. In such cases, the IDL compiler often emits
parallel transmittable classes that wrap the user-visible classes. These parallel classes are the ones presented to the core or
to the protocols.

By convention, the marshalling methods are implemented in terms of requests on the stream to marshal the instance’s
immediate subcomponents. As an example, an object representing the mapping of an IDL sequence will marshal itself by
first requesting the marshalling of its current length and then requesting the marshalling of each of its elements. ORBlite
contains abstract transmittable base classes for each of the types specifiable in CORBA IDL, which implement the canonical
marshalling behavior. Thus, the classes defined by a language mapping typically provide only methods that make a reference
to or marshal the subcomponents

When a protocol’s marshalling stream receives an instance of a transmittable type, it typically responds by simply turning
around and asking that instance to marshal itself. Occasionally, however, a protocol may have special requirements for the
wire representation (as with DCE’s padding requirements for structures). Transmittable types provide type-safe accessors
(foreshadowing C++’s recent dynamic_cast() mechanism) which allow a marshalling stream to ask, for example, “Are you a
structure?,” and take action accordingly, often calling the transmittable type’s subcomponent marshalling methods directly.

The marshalling capability also provides transmittable types with the ability to convert from one language mapping’s
inmemory representation to another’s (or between a single language mapping’s distinct in-memory representations for the
same type). As long as the two data types assert that they represent the same external IDL type, they can use a highly
optimized in-memory marshalling stream to perform the conversion with the source object marshalling and the sink
unmarshalling.

Local Bypass Optimization. When the stub and the skeleton exist in the same process space, the stub can
directly invoke the skeleton’s methods and bypass the transformation to and from the apply() call. In this
case, the call:

     �� � � �� � � �� � �result = object.foo(a,b,c);

is directly forwarded through the skeleton using

     result = impl.foo(a,b,c);

Note that the signatures for these two calls do not need to be identical.

An implementation object can disable this optimization. This is useful when an object wishes to ensure that a protocol has
an opportunity to service every invocation, even those that are local. Certain logging, high-availability, and release-to-release
binary compatibility mechanisms require this form of protocol intervention, even for the local case.

When the stub and skeleton reside in the same process but follow different language mappings, the stub may not know the
target implementation object’s calling conventions, or the argument data may not be in the appropriate form. When this
happens, the local bypass is not taken. Instead, the call is routed through the protocol abstraction layer, which will use a
very efficient local procedure call (LPC) protocol. This protocol behaves like a full RPC protocol (see below), but instead of
marshalling its argument list, it merely tells the arguments to convert themselves from the caller’s format to the target’s.

RPC Protocol. The RPC protocol is primarily responsible for implementing a distributed
apply() call. It works in cooperation with the transmittable types to migrate a call frame
from one process space to another. ORBlite does not require that the protocol actually
be an RPC protocol, only that it be capable of presenting the semantics of a thread-safe
distributed apply( ) call. Asynchronous and synchronous protocols are supported, and it

is common for more than one protocol to be simultaneously executing in the same process. The protocol may also be merely
an adapter which is only capable of producing the wire protocol required for a particular remote interface but is not a full
RPC implementation.

The separation between the transmittable types’ marshallers and the RPC protocol means that transmittable types can
be reused across different RPC protocols (see Fig. 4). An additional benefit is that adding a new custom protocol is fairly
straightforward because almost all of the complex marshalling is handled outside of the protocol layer.

All RPC protocols have the same shape, meaning that each protocol obeys the protocol abstraction layer. There are
well-defined interfaces for how a stub interacts with the protocol, how the protocol interacts with the marshallers, and how
the protocol interacts with the skeleton.

* A self-describing type that can hold an instance of any IDL-describable type.

** Marshalling is the process of serializing a data structure into a buffer or onto a communication stream such that the resulting data stream is sufficient to
recreate or initialize an equivalent object. Unmarshalling is the opposite process of reading the stream and creating or initializing the object.

Types

St
ub

Sk
el

et
on

RPC Protocol



Article 9 February 1997 Hewlett-Packard Journal      7

Caller

RPC Protocols

Target

Sk
el

et
on

Transmittable Types

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ

Custom Protocol

DCE CIOP Protocol

IIOP Protocol

St
ub

Fig. 4. Alternate RPC protocols.

These interfaces are, however, logically private in that they are not directly exposed to the client or to the implementation.
Keeping these interfaces private means that the system can dynamically choose, based upon a variety of variables, which
protocol should be used to connect a particular client to a particular implementation for a particular call. Examples of
variables that may affect protocol selection would be the protocol’s estimate of the time needed to bind to the
implementation, a protocol’s round-trip-time estimate for executing an apply( ) call, the security required on the
communication, whether the channel should be rebound* on error, or the latency allowed for the call invocation.

Primitive
Marshallers

RPC
Client

RPC
Server

Implements an apply() RPC

Marshalls Primitives over the Wire

Upcalls Skeleton’s apply() Function

RPC Protocol

Fig. 5. The major transport components associated with protocols.

Internal Structure of an RPC Protocol. Only the external interfaces for the RPC protocols are defined by ORBlite. The internal
structure may vary considerably between protocols. ORBlite makes no statement on whether a protocol is connection-based
or connectionless, which marshalling format is used (NDR, XDR, ASCII, etc.), whether the protocol represents data in
big-endian or little-endian format, or even what physical medium is used by the underlying communication mechanism. In
general, however, protocols will have the three major components shown in Fig. 5:

� The RPC Client implements the client side of the apply( ) call and is responsible for locating the target’s
implementation.

* Rebound means to reestablish a connection between a caller and a callee if an error occurs.



Article 9 February 1997 Hewlett-Packard Journal      8

� The primitive marshallers support the transmission and reception of primitive data types in a protocol-specific
manner.

� The RPC Server is responsible for receiving the call over the wire, using the ORBlite core to find the skeleton
associated with the target of the invocation and forwarding the RPC Client’s apply( ) call to the target skeleton.

Logical Call Flow
Given these pieces of the puzzle, the logical flow of control for a remote method invocation is shown in Fig. 6.

Caller Target

Sk
el

et
on

RPC
Client Primitive

Marshallers

RPC
Server

Transmittable Types

1. obj. f(a,b,c)
10. impl. f(a,b,c)

2. apply(obj, “f”, arglist)

5. arglist.marshal(my_marshaller)

7. arglist=obj.getargs(“f”)

9. obj.apply(“f”, arglist)

8. arglist.unmarshal(my_marshaller)

6. operation.unmarshal
(my_marshaller):

arglist arglist

St
ub

Process 1 Process 2

4. operation.marshal
(my_marshaller)

3. Protocol-specific bind()

Fig. 6. The logical flow of a remote method invocation.

Step 1. The caller executes the method f(a,b,c) on the stub object.

Step 2. The stub creates an arglist and calls the RPC Client’s apply( ) function.

Step 3. If necessary, the RPC Client binds with the target’s RPC Server using a protocol-specific mechanism.

Step 4. The RPC Client marshals the identifier for the target skeleton and then marshals the name of the operation to
perform.

Step 5. The RPC Client marshals an identifier for the target skeleton, then marshals the name of the operation to perform,
and finally tells the arglist to marshal itself (handing in the transport’s primitive marshallers). The arglist will use its transport
independent marshallers to turn composite data structures into primitives which can be marshalled using the transport’s
primitive marshallers.

Step 6. The RPC Server unmarshals the identifier for the target skeleton and then unmarshals the name of the operation to
perform.

Step 7. The RPC Server then upcalls the skeleton to get the server-side arglist for the specified operation. This upcall is a
critical component in decoupling the language API from the underlying protocol. Without this upcall, the RPC Server
component would have to know the memory format that the skeleton is anticipating and therefore would be tied to a
particular memory mapping.



Article 9 February 1997 Hewlett-Packard Journal      9

Step 8. The arglist returned from the upcall, which is operation-specific, is told to unmarshal its arguments. Each argument is
a transmittable type and will use the protocol independent unmarshallers to construct the arglist contents from primitives
unmarshalled using the protocol’s unmarshalling stream.

Step 9. The skeleton is upcalled to apply the unmarshalled arglist to the desired operation.

Step 10. The skeleton takes apart the arglist and invokes the actual method on the implementation.When the call on the
skeleton completes, the RPC Server will ask the arglist to marshal its output parameters back to the client process. The
RPC Client will unmarshal the output parameters and the stub will return the values back to the caller.

Dimensions of Evolvability

In this section we discuss how the ORBlite framework addresses the various types of evolvability.

Evolution of Object Implementation
ORBlite uses the IDL specification and the language mappings defined by CORBA and OLE to decouple an object’s
implementation from its interface. In this manner, an object’s implementation can be updated without affecting any other
part of the system provided that the interface is considered to specify not only syntax but also semantics and behavior.

ORBlite is not tied to a particular IDL or even the set of data types describable by a particular IDL. ORBlite requires that
isomorphic parts of different IDLs be mapped to the same base type constructs, but model and IDL designers are free to
experiment with extensions. Such extensions may, of course, impact interoperability. For instance, a server whose interface
uses a non-CORBA IDL type such as an asynchronous stream cannot easily be called by a client whose model does not map
this type.

Evolution of Object Interface
In ORBlite, objects can support multiple interfaces simultaneously, and the language mapping abstraction layer allows
clients to inquire of a target object whether the target supports a particular interface (in the OMG CORBA C++ mapping,
this is presented as the _narrow() and is_a() methods and in OLE C++ this is presented as QueryInterface()).

If an ORBlite object supports new functionality (or changes the semantics behind an interface) the object should export a
new interface. Old clients can query for the old interface, and new clients can query for the new one. In this manner, the
target object can support old clients as well as new clients.

Of course, with a strongly typed object model such as CORBA, such dynamic queries are often unnecessary since the
received object reference may already have been received as a strongly typed reference to the new interface.

Evolution of Programming Model
From the standpoint of evolution, there are two aspects of model evolution that must be anticipated: support for the
introduction of new data types and support for new implementations of existing data types.

Evolution of Language Mapping Types. The ORBlite framework defines a set of basic data types from which the transmittable
types used by each language mapping are derived. At the root of the tree is an abstract class TxType which requires the
derived classes to support _marshal() and _unmarshal() methods. These methods take a primitive marshalling stream parameter
supplied by the protocol being used for a particular call. Framework-provided subclasses of this root define more interfaces
for each of the basic types describable by CORBA IDL (e.g., structures, sequences, or enumerations). These subclasses
provide default marshalling behavior in terms of (abstract) methods for marshalling and unmarshalling the object’s
components.

A language mapping can evolve in two different ways. Since it is responsible for providing the actual types used by the
programmer, it is free to define and modify their interfaces as emitted by the language mapping’s IDL compiler. Canonically,
these types will derive from the ORBlite-provided base classes shown in Fig. 7, so an OMG C++ structure or COM array will
be seen by a protocol as merely a generic structure or array, regardless of its internal representation.

StructBase

OMGStruct

StructA

UnionBase

OMGUnion

ArrayBase

OMGArray

ExceptionBase

TxType

CORBA::Exception

Fig. 7. Data types derived from ORBlite’s base class TxType.



Article 9 February 1997 Hewlett-Packard Journal      10

Note that there is no requirement that the actual types as presented to the programmer be transmittable. A language
mapping merely has to guarantee transmittability of the data provided to a protocol. It is perfectly acceptable for a language
mapping to use a transmittable wrapper class within argument lists and idiosyncratic classes (or even C++ primitives or
arrays) in its API.

The other way that a language mapping can evolve is by adding types that are not directly supported by the ORBlite
framework. The OLE mapping, for example, does this to create a VARIANT data type. The mapping can choose to implement
the new data type in terms of one of the existing types (for instance, introducing a tree data type for use by the application
but internally representing it using a sequence data type) and subclassing from a provided base. The language mapping can
also choose a private representation for its contents and derive directly from TxType.

An additional attribute of ORBlite that supports a language mapping evolution is that the ORBlite framework makes no
requirement that a language mapping have a unique class representing a particular IDL type. This allows a mapping to
provide different representations of a type for different purposes. It also allows a later version of a language mapping
to change to a new representation for a data type while remaining able to handle the old version’s representation. For
example, the ORBlite core uses two different mappings for strings: one optimized for equality comparison and the other
for concatenation and modification. To the protocols, they behave identically.

Evolution of In-Memory Representation. There are two key issues involved in ensuring that the ORBlite core and the protocols
are decoupled from the language mapping’s data type representation. The first issue is ensuring that the RPC Client can
marshal the parameters of a call, and the second is ensuring that the RPC Server can unmarshal the parameters without
requiring excess buffering or parameter transformation. Essentially, we do not want to have to require that the language
mapping translate from a protocol’s in-memory data representation to its own.

The first issue is handled by the transmittable types’ marshallers and accessors, which allow a protocol to marshal and
retrieve composite data types without any knowledge of a language mapping’s in-memory data representation.

The second issue is more complicated, and is shown as step 7 in Fig. 6, in which the RPC Server upcalls the skeleton to
acquire the server-side default arglist. This upcall allows the RPC Server to offload memory management and in-memory
representation for the incoming arguments to the portion of application code that actually knows the data type that is
expected. A consequence of this is that the RPC Server can be reused across language mappings and is independent of
the evolution of a particular language mapping.

The arglist returned from the upcall knows how to unmarshal itself. This means that the RPC Server does not need to buffer
the incoming message and can allow the arglist to unmarshal its components directly into the language-mapping- specific
memory representation. This is sometimes called zero-copy unmarshalling. The number of message copies is a major
performance bottleneck in interprocess messaging.

Some language mappings, such as our experimental C++ mapping, allow an implementation to override the skeleton’s
default construction of the arguments. This is typically used when the implementation has a particular memory
representation that is more convenient for the application than the default representation provided by the language mapping
(e.g., the tree structure mentioned earlier). Overriding the construction of the default arguments removes the copy that
would normally be required to switch representations. A language mapping can use this technique to support features not
currently found in CORBA or OLE.*

The upcall is also used for two other features:

� Checking the per-object and per-method security policies

� Setting the thread-dispatch policy (e.g., thread priority and whether a new thread should be launched when
executing the method).

A language mapping will typically allow the implementation to override the skeleton’s default responses to the security
policy or thread-dispatch mechanism.

Supporting Protocol Evolution
The principal obstacle to protocol evolution in most systems is the dependency of application code on protocol-specific
APIs. In ORBlite, there are no references by the ORBlite core or by any of the language mapping components (i.e., the stub,
the skeleton, and the transmittable types) to any specific protocol. Given this independence from a specific protocol, there is
no need for visibility to the programmer.

This actually caused a rather interesting problem. It was not possible to just link a protocol into an ORBlite image as a
normal C++ library. Since the core supports multiple protocols and there are no references by the language mapping or the
core to any protocol, the linker does not have any unresolved symbols that would pull in a protocol built as a library. To
overcome this obstacle we force the protocol to be loaded by creating an unresolved reference at link time.

* For instance, arbitrary graphs, migratable objects, or structures that support inheritance.



Article 9 February 1997 Hewlett-Packard Journal      11

The protocols of a system evolve by dynamically or statically linking new protocols (or new versions of old protocols) into
an ORBlite process. Updating or adding a protocol requires no change to the application code, the ORBlite core, or any
language mapping.

To add a new protocol, the protocol developer derives from four abstract classes (the RPC Client, the RPC Server, the RPC
primitive marshallers, and the RPC_Info class). The RPC_Info class registers the protocol with the ORBlite core and implements
the bind() call for the protocol. The bind() call returns an instance of the RPC Client abstract interface that will be used to issue
the apply() call for communication with a particular virtual process.

The RPC primitive marshallers will be used during the apply() call to choose the on-the-wire representation for the arguments
of a call. They are called to marshal primitive data, such as integers and floating-point numbers, and are also given a chance
to handle composite transmittable types. Normally, this last call merely hands marshalling responsibility back to the
transmittable object, but the protocol can use this hook to satisfy special externally mandated padding, alignment, or
ordering requirements as with DCE RPC’s alignment requirements for structures and unions.

Managing Object References and Binding. Fig. 6 depicts the flow of a method invocation assuming an RPC Client has already
been selected. In its simplest form, an RPC Client is selected when a client invokes a method on a stub. If the stub is not
already bound to a suitable RPC Client, the stub asks the ORBlite infrastructure to find a protocol that can connect to the
target object associated with an object reference. A bound RPC Client can become unsuitable if the client requires a
particular quality of service (such as authentication or deadline-based scheduling). If the RPC Client is not suitable, a new
RPC Client must be bound or an exception raised.

Each protocol registers with the ORBlite core a unique identifier and a binding interface. Each object reference contains a
set of protocol tags and opaque, protocol-specific address information. The tags supplied in the object references are used
by ORBlite to select a protocol that might be able to communicate with the target object.

If the target object is accessible over multiple protocols (i.e., both the client and the server support more than one protocol
in common) then the protocol with the best quality of service is selected. The current selection criterion is based on a
combination of the overhead involved for binding to the process associated with the reference plus the overhead for
invoking the call. Assuming the process containing the object is activated, most RPC protocols have a 10-ms initial binding
cost plus a 1-ms round-trip overhead per call. Protocols that can reuse connections across objects are generally selected in
preference to connectionless protocols, which are selected in preference to protocols that require connection setup. The
actual quality-of-service parameterization can get complicated. A named collection of collocated objects is called a virtual

process. Fig. 8 shows the situation in which a process has exported two objects A and B in the virtual process VP1234. The
virtual process is accessible over three protocols: IIOP (Internet Inter-ORB Protocol), ONC RPC, and the DCE-CIOP (DCE
Common Inter-ORB Protocol).

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎ
ÎÎÎ
ÎÎÎ

wkf01.hpl.hp.com, 2102

15.0.112.2, 101, 34

3ef23a2..., 01ba34...

A

B

DCE CIOP

Virtual Process ID “VP1234”

ONC

IIOP

Fig. 8. Using multiple profiles to locate object implementations.

In ORBlite, protocols are encouraged to cache in the object reference the protocol-specific address of the last known
location of the virtual process containing the object. While objects do move, the last known address is often correct and
caching it can improve performance over using an external location mechanism.

Handling Common Scalability Issues. ORBlite was designed to support very large numbers of object references (more than
100,000) within a single process. To improve the scalability of location and per-object memory overhead, ORBlite provides
support for protocols that wish to merge per-object cache information for objects located at the same address. In this model
of object addressing, the address information held in an object reference is partitioned into two parts: an address associated
with a virtual process identifier and an object identifier, which uniquely identifies the object within the virtual process.



Article 9 February 1997 Hewlett-Packard Journal      12

In Fig. 8 the objects are named A@VP1234 and B@VP1234. A client that holds references to A and B can merge the cache
information for the virtual process VP1234.

Often there are hundreds if not thousands of objects per process, and therefore, if location information for a protocol is
based on a virtual process identifier, locating a single object in a process will have the side effect of refreshing the address
information for all other objects at the same address. Some protocols will lose cache information for other protocols as the
object reference is passed between processes. This is unfortunate because the cache information must be recreated if the
object is to be accessible over other protocols. It is highly recommended that protocol designers allow object references to
contain additional opaque information that may be used by other protocols.

ORBlite makes no requirement that a protocol use the virtual process abstraction, nor does it dictate how a protocol locates
an object. ORBlite does expect, however, that the protocol’s address information contained in an object reference is
sufficient for that protocol to locate and, if necessary, activate the target object.

Supporting Legacy Protocols
In most cases, an object reference is created when an implementation is registered with the ORBlite infrastructure. When
such an object reference leaves the process, the opaque, protocol-specific address information associated with each
currently loaded protocol is marshalled along with it.

In the case of legacy components, it is likely that ORBlite is not in the server process. In this case, the binding information
for the protocol must be added to the object reference via some other mechanism. Such ad hoc object references may be
created by the legacy protocol, which obtains addressing information through an out-of-band mechanism. Alternatively, they
may be acquired using normal protocols from a special-purpose server which creates the references from information kept
in system configuration tables. However such constructed object references are obtained, they are indistinguishable from
real object references and can subsequently be handed around in normal ORBlite calls.

When a stub attempts to bind the object reference, the protocol tag is matched to the protocols supported by the client
process. If the process supports the protocol, an RPC Client is created that can interpret the request and communicate with
the non-ORBlite server using the legacy protocol (see Fig. 9).

Caller

ORBlite Process

Non-ORBlite Process

Gateway Protocol

St
ub

Fig. 9. Using transport gateways.

When ORBlite is not on both sides of the communication link, the protocol used is referred to as a gateway protocol. Note
that gateway protocols are not only useful for communicating with legacy servers—an ORBlite process can publish itself on
a legacy protocol so that it can be called by legacy, non-ORBlite clients. This form of publication is especially useful when a
service needs to be accessible over both old protocols such as DCE RPC and new protocols such as IIOP.

Supporting Evolution of the ORBlite Core
In developing and deploying the ORBlite system, it became apparent that the typical owners of language mappings and
protocols would not be the same as the typical owners of the ORBlite core. System developers from entities such as
divisions building medical systems, test and measurement systems, or telecommunication systems were willing to own the
portion that was particular to their domain, but each wanted the rest of the system to be someone else’s responsibility.

This meant that the core itself needed to be able to evolve independently of the language mappings or protocols that plugged
into it. It had to be simple to hook new protocols and mappings into old infrastructure and new infrastructure had to support
old protocols and mappings.

The combination of the language mapping abstraction layer, the protocol abstraction layer, and the thread abstraction layer
has made such independent evolution extremely straightforward.



Article 9 February 1997 Hewlett-Packard Journal      13

Experience with the Framework

ORBlite was conceived in December, 1993 to support test and measurement systems. These systems contain computers and
measurement instruments and are used in scientific experiments, manufacturing test, and environmental measurement.
Analysis showed that the complexity of constructing the test and measurement system was the limiting factor in getting a
product to market. Existing systems used a number of different communication mechanisms, and each component tended
to have an idiosyncratic (and often undocumented) interface. Within HP, systems have used HP-IB, raw sockets, ONC/RPC,
SNMP, NCS, and NFS.

At the time, there was a desire to move toward more stable, computer-industry-standard mechanisms, but it was unclear
which proposed standard would win in the long run. The most likely contenders, CORBA and OLE, were still far from
being well-specified. As we began publicizing our efforts within HP, we discovered that many others were facing a similar
dilemma—notably those divisions responsible for medical systems and network management systems, each of which had
its own set of legacy communication protocols.

The first version of ORBlite became operational in August of 1994. It supported the HyperDesk IDL/C++ language mapping6

and two communication protocols: a thread-safe distribution protocol based on ONC RPC, and a gateway protocol designed
to connect ORBlite services and clients to installed medical applications using the HP CareVue 9000 RPC protocol. The
framework was extremely portable, thread-safe and reentrant, and because of the thread abstraction layer, it compiled
without change on both UNIX  and Microsoft platforms. It was used in medical, test and measurement, analytical, financial,
and telecommunication monitoring applications.

Over the past two years, dramatic changes have occurred in the specifications by OMG and in the OLE implementation by
Microsoft. OMG has ratified a C++ language mapping,7 two new standard communication protocols,1 and recently an OLE
language mapping for CORBA.8 In addition, Microsoft has released a beta version of the DCOM (Distributed Component
Object Model) protocol.9

In May, 1995, the ORBlite architecture began to make its way into external products. HP’s Distributed Smalltalk was
reimplemented to support the protocol abstraction layer, and the ORBlite code base was transferred to the Chelmsford
Systems Software Laboratory to be turned into HP ORB Plus and released to external customers in April, 1996. HP ORB
Plus, a strict implementation of CORBA 2.0, needed to support the new OMG standard C++ language mapping, which was
previously unsupported by ORBlite. This pointed out the need for a well-defined language mapping abstraction layer and
spurred its definition.

Since the transfer, the infrastructure has continued to evolve. We have experimented with new protocols to support high
availability and legacy integration and new language mappings to support potential new IDL data types and to simplify the
programmer’s job. We are also investigating implementing an embeddable version of the architecture, which would have the
same externally visible APIs but would be able to run in extremely memory-limited environments. Finally, we are looking
into the declarative specification of protocol-neutral quality-of-service requirements and capabilities. This would assist in
selecting the appropriate protocols to use and in guaranteeing the desired quality of service, where this interpreted to
include performance, security, payment, concurrency, and many other dimensions. Following the ORBlite philosophy, we
are attempting to design this mechanism in such a way that the set of available quality-of-service dimensions itself can
evolve over time without impacting existing components.

The ORBlite infrastructure has allowed developers to build systems even as the standards evolve. The support of multiple
language mappings, thread-safe distributed object communication, and multiple protocols has provided a unifying approach
to building components and systems across the company. The key issues on the horizon will be ensuring that the standards
from Microsoft, OMG, and others consider concurrency, streaming data types, and quality of service parameterization.

Acknowledgments
ORBlite would not have been possible without the input and feedback from our customer divisions and beta sites. We would
especially like to thank Dean Thompson of the Network and System Management Division, Rob Seliger of the Medical
Products Group, Horst Perner of the Böblingen Instrument Division, and Bill Fisher, Henrique Martins, and Paul Harry of HP
Laboratories (Palo Alto and Bristol). We are also indebted to the ORB Plus team at the Chelmsford/Cupertino Systems
Software Laboratory, especially Steve Vinoski, whose comments led to the idea of the language mapping abstraction layer,
Mark Vincenzes, who was heavily involved in the design of the language mapping abstraction layer, Bob Kukura, who
implemented the interoperable object references, and Bart Hanlon, who kept the product development on course. Others
who assisted in the development include Kevin Chesney, who reimplemented HP Distributed Smalltalk according to the
ORBlite framework, Walter Underwood and Lance Smith, who developed the thread abstraction layer, and Mark Morwood,
who implemented the HP CareVue 9000 gateway protocol. We also wish to thank Mary Loomis, Joe Sventek, Jeff Burch, and
Randy Coverstone for running interference for us, Harold Brown and Walter Underwood for picking up customer support
when it got out of hand, Shane Fazzio for the NT build environment, and Dick Allen for general Microsoft expertise. And, of
course, Lisa and Susan for putting up with all the long hours.



Article 9 February 1997 Hewlett-Packard Journal      14

References
1. The Common Object Request Broker: Architecture and Specification, Revision 2.0, Object Management Group,

July 1995.
2. The Common Object Request Broker: Architecture and Specification, Object Management Group, Document

Number 91.8.1, August 1991 (Draft).
3. OLE 2 Programmer’s Reference: Volume 1 & 2, Microsoft Press, Redmond Washington, 1994.
4. OSF DCE 1.0 Application Development Guide, Technical Report, Open Software Foundation, December 1991.
5. Network Programming Guide, Revision A, Sun Microsystems Inc., March 27, 1990.
6. Second Revised Submission in Response to the OMG RFP for C++ Language Mapping, OMG Document

Number 93-11-5, HyperDesk Corporation, November 1993 (Draft).
7. S. Vinoski, editor, C++ Mapping 1.1 Revision, OMG Document Number TC.96-01-13, January 1996.
8. J. Mischkinsky, editor, COM/CORBA Part A Corrected Revised Submission, OMG Document Number

ORB.96-01-05, January 1996.
9. C. Kindel, Microsoft Component Object Model Specification, OMG Document Number 95-10-15, October 1995

(Draft).

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/97feb/fe97a10.htm


Article 10 February 1997 Hewlett-Packard Journal      1

Developing Fusion Objects for

Instruments

The successful application of object-oriented technology to
real-world problems is a nontrivial task. This is particularly true for
developers transitioning from nonobject-oriented methods to
object-oriented methods. Key factors that improve the probability of
success in applying object-oriented methods are selecting an
object-oriented method, developing a process definition, and
continually improving the process.

by Antonio A. Dicolen and Jerry J. Liu

Object-oriented technology is fast approaching mainstream status in the software community. Many software developers are
interested in becoming object-oriented practitioners. Managers, once skeptical of its value, are considering its use in their
business enterprises. This technology is old enough not to be a fad and new enough to be recognized by customers as high
technology.

Within the embedded community (i.e., microprocessor-based instrumentation) at HP, there is significant interest in adopting
object-oriented technology for the development of new products. However, the adoption rate of object-oriented technology
at HP has been hampered by earlier negative experiences. Attempts to use object-oriented technology in instruments
occurred as early as the mid 1980s. At that time the technology was in its infancy. The methods for employing the technology
were immature and the development tools necessary for its effective use were nonexistent. Application of the technology at
that time resulted in unmet product requirements.

These experiences hindered further development using object-oriented technology. Object-oriented technology became
synonymous with slow speed, high risk, and failure. This perception imprinted itself on the culture of HP divisions using
embedded software technology. It was not until the early 1990s that this perception began to change. As engineering
productivity became an issue for management, software reuse emerged as a possible solution. With reuse as a business goal,
an object-oriented approach was once again considered as a means of achieving that goal.

It is important to recognize that reuse and object-oriented technology are not synonymous since it is possible to achieve
reuse without an object-oriented approach. Software math libraries are a prime example of this fact. This type of reuse is
called library reuse. It is the most common and the oldest form of software reuse. Generative reuse, such as that provided
by tools like lex and yacc, is another form of software reuse. In general these tools use a common implementation of a state
machine and allow the user to modify its behavior when certain states are reached.

Another type of reuse is framework reuse. Microsoft  Windows’ user interface is an example of framework reuse. In
framework reuse, the interaction among the system components is reused in the different implementations of the system.
There may be certain common code components that some, but not necessarily all, of the implementations use. However,
the framework is what all these systems have in common. Microsoft foundation classes are an example of common code
components. Menu bars, icon locations, and pop-up windows are examples of elements in the framework. The framework
specifies their behaviors and responsibilities.

One reuse project based on this approach was a firmware platform for instruments developed at our division. The goal was
to design an object-oriented firmware framework that could be reused for different instruments. With this project, we hoped
to use object-oriented technology to address reuse through framework reuse. We chose to use Fusion,1,2 an object-oriented
analysis and design methodology developed at HP Laboratories, to develop our instrument framework.

In this article, we first describe the firmware framework and our use of the Fusion process. Next we present our additions to
the analysis phase of the Fusion process, such as object identification and hierarchical decomposition. A discussion of the
modifications to the design phase of Fusion then follows, including such topics as threads and patterns. We conclude with
the lessons we learned using Fusion.

Firmware Framework

The new firmware framework is an application framework. An application framework provides the environment in which a
collection of objects collaborate. The framework provides the infrastructure by defining the interface of the abstract classes,
the interactions among the objects, and some instantiable components. A software component, or simply a component, is an



Article 10 February 1997 Hewlett-Packard Journal      2

atomic collection of source code used to achieve a function. In many situations, a component will have a one-to-one
correspondence with a C++ object. At other times, a component may be made up of multiple objects implemented in C++
or C source code.

Users of the firmware framework contribute their own customized versions of the derived classes for their specific
applications. Note that the framework approach is very different from the traditional library approach. With the library
approach, the reusable components are the library routines, and users generate the code that invoke these routines. With the
framework approach, the reusable artifacts are the abstractions. It is their relationships to one another, together with the
components, that make up the solution to the problem.

The firmware framework contains a number of application objects. These are different kinds of applications that handle
different kinds of responsibilities. The responsibilities of these application objects are well-defined and focused. For
example, there is a spectrum analyzer application that handles the measurement aspects of an instrument and also generates
data, a display application that is responsible for formatting display data, and a file system application that knows how to
format data for the file system.

There is always a root application in the system, which is responsible for creating and destroying other applications and
directing inputs to them. Other components of the application framework include the instrument network layer and the
hardware layer. The applications communicate with each other via the instrument network layer. The hardware layer
contains the hardware device driver objects, which the applications use through a hardware resource manager. Fig. 1 shows
an overview of the firmware framework.

Applications

Fundamental Information (FI)

Measurement Results (MR)

Client Interface (CI)

Hardware

Instrument Network

Ro
ot

Sp
ec

tr
um

 A
na

ly
ze

r

D
is

pl
ay

Fi
le

 S
ys

te
m

Ca
lib

ra
tio

n

Fig. 1. An overview of the new firmware framework.

Application Layers
An application in the firmware framework is a collection of objects organized into three layers: client interface,
measurement results, and fundamental information. These layers deal with information at different levels of semantics.
The semantics at the client interface layer deal with instrument functionality while the semantics at the fundamental
information layer are more related to areas such as hardware control.

Client Interface Layer. This layer represents an abstraction containing user-selectable parameters, the interface for setting
these parameters, the results, and the sequence for generating the results. Thus, the client interface layer defines the
features and the capabilities of an application. It is responsible for maintaining application state information and creating
the requested results. This layer also contains a collection of application parameter objects that store the state of the
application, and a dependency manager that manages the parameter limiting and coupling dependencies. The dependency
manager also triggers events on state changes. These state changes cause the selection of the correct MeasurementResult to
use to satisfy the user’s request.

Take, for example, a simplified multimeter instrument. It could be an ohmmeter, a voltmeter, or a current meter. To select
the voltmeter mode, the instrument software must deselect the ohmmeter or current meter mode and then select the
voltmeter mode. The user interface simply turns on voltmeter mode. The dependency manager knows that these three
modes are mutually exclusive and automatically sets the current meter and ohmmeter modes to off. In addition, the user
could set the measured voltage to be the average value or the rms (root mean square) value. This corresponds to the
selection of a specific MeasurementResult that provides the information the customer is interested in.

Measurement Result Layer. This layer is made up of objects derived from a base class called MeasurementResult. These objects
contain the measurement algorithms that specify the methods for combining raw data into meaningful data.

MeasurementResult objects subscribe to and respond to events in the client interface layer and in other MeasurementResult
objects. Complex measurement results contain simple MeasurementResult objects. Examples of MeasurementResult objects in an
instrument application are SweepMR, MarkerMR, and LimitLineMR. These could be be measured values from a spectrum analyzer.
An example of a MeasurementResult object in a display application could be a TraceDisplayItem that knows how to read a MarkerMR
and generate marker information for the display.



Article 10 February 1997 Hewlett-Packard Journal      3

The measurement result layer has no knowledge of how or where its input data is generated. Its input can come either from
other MeasurementResults or from the fundamental information layer. It is thus free of any hardware dependencies. This layer
uses the fundamental information layer to coordinate the hardware activity.

Fundamental Information Layer. This layer performs the specific activities that orchestrate the hardware components
to achieve a desired result. The objects in the fundamental information layer know about specific hardware capabilities.
They keep the hardware objects isolated from each other and also generate self-describing, hardware-independent data. The
fundamental information layer applies hardware corrections (e.g., compensations for hardware nonlinearities) to the
measured results.

The fundamental information layer contains three major components: a state machine with sequencing information that
controls the objects in the layer, a production object that is responsible for orchestrating the hardware components, and a
result object that is responsible for postprocessing data. Examples of fundamental information layer objects include SweepFI,
which is responsible for measuring frequency spectra in a spectrum analyzer application, and the display list interpreter in
the display application, which is responsible for controlling the instrument display.

Instrument Network
The instrument network contains the objects that facilitate interapplication communication, including an ApplicationArchive
object, which is responsible for naming and providing information to applications, and an ApplicationScheduler object that
schedules the threads that make up the applications.

Hardware Layer
The hardware layer contains the objects that control the instrument hardware. These objects contain very little context
information. There are two types of hardware objects: device objects, which drive a simple piece of hardware, and assembly
objects, which are collections of hardware objects. Hardware components are organized in a hierarchy much like the
composite pattern found in design patterns.* Hardware objects are accessed through handles like the proxy pattern
described in the patterns book.3  Handles can have either read permission or read-write permission. Read permission means
that the client can retrieve data from the object but is not able to change any of the parameters or issue commands.
Read-write permission allows both. Permissions are controlled through the hardware resource manager.

Communication Mechanisms
Two main communication mechanisms glue the architecture together: agents and events. Agents translate the language of
the user (client) into the language of the server (application). Different kinds of agents apply different kinds of translations.
For instance, a client may enter information in the form of a text string, while its target application may expect a C++
method invocation. Thus, the client would use a specialized agent to translate the input information into messages for the
target application (the server).

Events are mechanisms used to notify subscribers (objects that want to be notified about a particular event) about state
changes. We decided to use events because we wanted to have third-party notification, meaning that we did not want the
publishers (objects that cause an event) to have to know about the subscribers.

There are two types of events: active and passive. Active events poll the subject, whereas passive events wait for the subject
to initiate the action. Our event mechanisms and the concepts of subscribers and publishers are described in more detail
later in this paper.

Use of Fusion

In selecting an object-oriented method to guide our development, we were looking for a method that would be easy to learn
and lightweight, and would not add too much overhead to our existing development process. We were a newly formed team
with experience in our problem domain and in embedded software development, but little experience in object-oriented
design. We wanted to minimize the time and resources invested in working with and learning the new technology until we
were fairly certain that it would work for us. At the same time, we wanted to have a formal process for designing our system,
rather than approach the problem in an ad hoc manner.

Fusion (Fig. 2) met these requirements. It is a second-generation object-oriented methodology that is fairly lightweight and
easy to use.4

For the most part, our use of Fusion was very straightforward. We started with the system requirements, and then generated
a draft of the system object model and the system operations of the interface model. We also generated data dictionary
entries that defined our objects and their interrelationships. These documents made up the analysis documents. We did not
develop the life cycle model because we did not see how it contributed to our understanding of the system. As time went on,
we discovered that we really did not need it.

* Design patterns are based on the concept that there are certain repeated problems in software engineering that appear at the component interaction
level. Design patterns are described in more detail later in this article.



Article 10 February 1997 Hewlett-Packard Journal      4

Requirements

Creation
Model

Object
Interaction

Graphs

Program

Inheritance
Graphs

Thread
Model

Visibility
Graphs

Class
Descriptions

Object
Model

Interface
Model

Data
Dictionary

*

*

*Extensions to Fusion Process

Fig. 2. The Fusion process for software development.

From the analysis model, we mapped the analysis onto a design and generated the object interaction graphs to show the
interactions between the objects. We then generated the visibility graphs and derived the class descriptions. These were
straightforward processes.

By no means did we go through this entire process in one pass. For us, using Fusion was an iterative process. Our system
was clearly too large to analyze and design in one pass. If we had tried, we would have been overwhelmed with the details.
Instead, we made a first pass to identify the primary objects. We then divided the system into subsystems and recursively
applied the Fusion method to each subsystem level to discover the higher-order objects at that level.

For instance, at the topmost level we identified the major components of the firmware framework: the client interface layer,
the measurement result layer, and the fundamental information layer (see Fig. 3). We then sketched out the interactions
between these components, repeated the process for each of the subsystems, and explored the details within each of the
components of the subsystems.

We did not apply the iterative process simply to find details. It was also a way to check the top-level analysis and design and
feed back into the process anything that we had overlooked in the higher-level passes. These checks helped to make our
system implementable. Through external project reviews with object-oriented experts, we also discovered other ways to
look at our abstractions. For instance, with our original analysis, our focus was on the subsystem that performed the
measurement functionalities of the instruments. Thus, we ended up with an architecture that was focused on measurement.
We had layers in the system that handled the different aspects of obtaining a measurement, but few layers that supported the
instrument firmware. It was not until later, with outside help, that we saw how the patterns and rules for decomposing the
instrument functionality into layers applied equally well to subsystems that were not measurement related, such as the
display or the file system. We were also able to abstract the different functionalities into the concept of an application and
use the same rules and patterns to decide how the responsibilities within an application ought to be distributed.

We found Fusion to be an easy-to-use and useful methodology. This method provided a clear separation between the analysis
and the design phases, so that we were able to generate system analyses that were not linked to implementation details.



Article 10 February 1997 Hewlett-Packard Journal      5

Application

Measurement Results (MR)

Hardware

Uses

Uses

Fundamental Information (FI)

CalSource

Production Response

Parameter

Dependency Manager

Client Interface (CI) Layer

Fig. 3. The object model for the client interface, measurement results, and fundamental information objects.

Of course, no methodology is perfect for every situation. We made some minor modifications to the method along the way,
as well as some extensions (see Fig. 2), which will be described later. For instance, we omitted the life cycle models. Since
we knew that we were going to implement our system in C++, we used C++ syntax to label our messages in the object
graphs and C++ class declarations when we generated the C++ classes. We also did not use the state diagram portions of
Fusion to generate states for our state machines. We felt that we did not need this state machine facility and thus freed the
staff from having to learn yet another notation.

Extensions to Fusion—Analysis Phase

In our desire to perform object analysis more consistently, our team developed extensions to Fusion that helped non-object-
oriented practitioners make the paradigm shift to the object-oriented mind-set much more easily.

Many developers and managers naively assume that a one-week class on object-oriented technology is sufficient to launch a
team into developing object-oriented software. While this may be a necessary condition, it is not sufficient for the successful
acquisition and application of object-oriented technology.

Many texts and courses on object-oriented methods treat the analysis phase as merely the identification of nouns that are
objects and their relationships with one another. Having conveyed this, the analysis sections of these books then focus on
method notation rather than helping the novice overcome the biggest obstacle in object-oriented analysis, the identification
of objects.

Without sufficient help, novices produce analysis diagrams that conform to the object notation, but merely recast ideas from
either the structured analysis paradigm or from some home-grown paradigm. The circles of structured analysis and design
are turned into boxes and, voila, an object diagram is born.

Our team was not spared this experience. Fortunately, we consulted object-oriented experts who taught us what to do. Thus,
we developed an analysis technique that could be consistently applied project-wide to help the developers transition from
structured to object-oriented analysis. This was critical to our facilitating software reuse, the primary goal of the project.

Object Identification
Successful object-oriented analysis begins with identifying a model that captures the essence of the system being created.
This model is made up of behaviors and attributes that are abstractions of what is contained in the system to accomplish its
task.

What makes a good abstraction? The answer to this question is critical to the effective use of object-oriented technology.
Unfortunately, identifying the wrong abstraction encourages a process known as “garbage in, garbage out.” Furthermore, the
right abstraction is critical to the ease with which a developer can implement the object model. It is possible to generate a
proper object model that cannot be implemented. The key is in the choice of the abstraction.



Article 10 February 1997 Hewlett-Packard Journal      6

What makes an abstraction reusable? The answer to this question is critical to achieving the value-added feature of
object-oriented technology that is needed to achieve software reuse. Understanding the context in which reuse can occur is
important.

An analysis framework exists that can be used to guide the identification of abstractions. This framework has the added
benefit of guaranteeing that the resultant object model derived from its use is realizable. Furthermore, its foundation is
based on the premise that software reuse is the ultimate goal.

In developing our analysis, we noted the questions the experts would ask when presented with our work. Fundamentally,
their questions focused on understanding the responsibilities of the abstractions that we had identified. Responsibility, it
turns out, gives rise to the state and behavior of an object. Previous research on this topic yielded an article5 that discusses
responsibility-based design, and describes an object-oriented design method that takes a responsibility-driven approach. We
synthesized this knowledge into what can be described as responsibility-based analysis.

This new analysis technique is based on a pattern of three interacting abstractions: the client, the policy, and the
mechanism. Fig. 4 illustrates the object model for the client-policy-mechanism framework.

Client
Requests
Services Policy Uses Mechanism

Initiates Request
to Change State

Executes
Request

Decides How to
Process Request

Fig. 4. The object model for the client-policy-mechanism framework.

The client abstraction requests services, initiates activities that change the system state, and queries for request-specific
status within the system.

The policy abstraction decides when and how a request will be acted upon. It accepts the client request and, based on the
responsibility given to it by the analyst, chooses the appropriate way in which the work will be done. In performing this
responsibility it sets the context for the relationships between the system components.

The mechanism abstraction actually performs the change to the system state. If the operation is a state query, it returns
the desired information. It does not return context information related to the operation being discussed. The mechanism
abstraction makes no decision as to whether it is appropriate for it to perform an operation. It just does it.

As an example, consider creating a software application to read the current market value of HP stock. The client-policy-
mechanism analysis of the problem, at a very high level, yields at the minimum three abstractions: an abstraction
representing the user (the client), an abstraction that represents when and how the HP stock information is to be acquired
(the policy), and lastly, an abstraction that knows about the value of HP stock (the mechanism). The mechanism abstraction,
when implemented, becomes the software driver for acquiring the stock price. In one instance, the mechanism object reads
the value of HP stock from a server on the Internet via telnet. In another instance, the mechanism acquires the stock value
via http. (Telnet and http are two internet communication protocols.) The policy abstraction determines how often to access
the mechanism. In our case it determined how often, that is, the time interval used, to poll the mechanism. The client object
receives the resultant information.

From a software reuse perspective, mechanism abstractions are the most reusable components in a system. Mechanisms
tend to be drivers, that is, the components that do the work. Since the responsibility of a mechanism is context-free, the
work that it does has a high probability of reuse in other contexts. Being context-free means that it does not know about the
conditions required for it to perform its task. It simply acts on the message to perform its task. In the example above, the
mechanism for acquiring the stock price can be used in any application requiring knowledge of the HP stock price.

Though not as obvious, using the client-policy-mechanism framework gives rise to policy abstractions that are reusable. In
the example above, the policy abstraction identified can be reused by other applications that require that a mechanism be
polled at specific time intervals. Making this happen, however, is more difficult because the implementer must craft the
policy abstractions with reuse in mind.

The analysis technique described above attempts to identify  client, policy, mechanism, and the contexts in which they
exhibit their assigned behaviors. When policy roles are trivial, they are merged into the client role, producing the familiar
client/server model. This reduction is counterintuitive, since most client/server model implementations imbed policy in the
server. However, from a software reuse point of view, it is important to keep the server a pure mechanism. On the other
hand, it is also important to resist the temptation to reduce the analysis to a client/server relationship. Doing so reduces both
the quality of the abstractions and the opportunity for reusing policy abstractions.



Article 10 February 1997 Hewlett-Packard Journal      7

These three abstractions together define the context of the problem space. Experience has shown that to produce a clean
architecture, it is important for each abstraction to have one responsibility per context. That is, a policy abstraction should
be responsible for only one policy, and a mechanism abstraction should be responsible for doing only one thing.

On the other hand, abstractions can play multiple roles. In one context an abstraction may play the role of mechanism and in
another context be responsible for policy. An example illustrates this point more clearly. Consider the roles in a family unit.
A young child performs requests made by a parent who in turn may have been asked by a grandparent for a specific activity.
In a different context, for example, when the child grows up, it plays the role of parent for its children and its parents, who
are now grandparents. In this latter setting, the parents are the policy makers, the grandparents are the clients, and the
children (of the child now grown up) are the mechanisms (see Fig. 5).

MechanismPolicyClient

Client Policy Mechanism

Context: Young Child

Context: Child as Parent

Child’s Grandparent

Child’s Parent

Child

Child’s
Child

Fig. 5. The client-policy-mechanism model as applied to a family unit.

Just as, depending on context, a specific individual plays different roles, so it is true with abstractions. In one 
context an abstraction may be a mechanism and in another, a policy. The critical rule to keep in mind when using the
client-policy-mechanism framework is that there should only be one responsibility per abstraction role.

Hierarchical Decomposition
Another example of systems that illustrate the single-role- per-context rule is found in the hierarchy of the military forces.
In the United States, the commander in chief issues a command, the joint chiefs respond to the command and determine the
methods and the timing for executing the command, and the military forces complete the task. In a different context, the
joint chiefs may act as clients to the admiral of the navy who determines the methods and timing for the subordinates who
execute the task (see Fig. 6).

Commander in Chief

Joint Chiefs

Army
General

Air Force
General

Navy
Admiral

Naval
Forces

Client

Client

Military Forces

Policy

Mechanism

Policy

Mechanism

Context: Strategic

Context: Tactical

Fig. 6. The client-policy-mechanism model as applied to a military hierarchy.



Article 10 February 1997 Hewlett-Packard Journal      8

In each of these examples there is a client, a policy, and a mechanism. In one context, a person is responsible for policy
decisions. In another, the same person is responsible for mechanism or client activities. It is this concept that gives rise to
the use of the client-policy-mechanism framework in helping to perform hierarchical decomposition of a problem domain.
The repetitive identification of roles, contexts, and responsibilities at ever finer levels of granularity helps identify the
solution space for the problem domain.

The firmware framework team performed hierarchical decomposition by identifying roles, contexts, and responsibilities.
These responsibilities defined abstractions that produced objects and groups of objects during the implementation phase. In
the early phases of our novice object-oriented project, it was expedient to use the words object and abstraction
interchangeably. As the team gained experience and became comfortable with object-oriented technology and its
implementation, the distinction between the abstraction and its resulting objects became much better appreciated.

The analysis technique based on the client-policy-mechanism framework resulted in a hierarchical decomposition that
yielded layers and objects as shown in Fig. 7. Layers are groups of objects that interact with one another to perform a
specific responsibility. Layers have no interfaces. Their main function is to hold together objects by responsibility during
analysis to facilitate system generation. For example, many software systems include a user interface abstraction. However,
upon problem decomposition, the user interface abstraction typically decomposes into groups of objects that collaborate
and use one another to satisfy the responsibilities of the user interface. When the abstraction is implemented, it usually does
not produce a single user interface object with one unique interface.

Interface
Object Object Object Object

Abstraction

Hierarchial
Decomposition

Layer Object

Instantiable Abstraction
Noninstantiable Abstraction

Fig. 7. An abstraction decomposition.

Much of this may not be discovered or decided until the design phase. However, knowing about it in the analysis phase
maximizes the identification of abstractions and the completion of the analysis.

Creation Model
Many times discussions about abstractions resulted in intangibles that were difficult to grasp. To alleviate this problem, the
team supplemented Fusion with a dependency model showing object dependencies and indicating when objects should be
created. This provided developers with a concrete picture of which objects needed to be available first.

Consider again the HP stock price application. Let the mechanism object be represented by object A and let the policy object
be represented by object B. Fig. 8 represents a creation model for the objects under discussion. It shows that object A has to
be created before object B. This means that the mechanism for acquiring the HP stock price is created first. The object that
determines how often to acquire HP stock price can only be created after object A. This example creation model is one of
several that were discussed during the analysis phase to clarify the roles of the abstractions.

Information Dependency
(Implies that B Is Dependent on A)

Creation
Order

1.

2.

A

B

Fig. 8. A creation model.



Article 10 February 1997 Hewlett-Packard Journal      9

Extensions to Fusion—Design Phase

We made extensions to the Fusion process with threads, design patterns, and reuse.

Threads
Our most extensive modifications to Fusion in the design phase were in the area of threads. Our real-time instrument
firmware systems, which are very complex, must deal with asynchronous events that interrupt the system as well as send
control commands to the measurement hardware. For example, measurement data from the analog-to-digital converter must
be read within a certain time period before it disappears, and there may also be measurement hardware that needs to be
adjusted based on these dynamic data readings.

There are also many activities going on in the system that may or may not be related. For example, we may want to have a
continuous measurement running at the same time that we run some small routine periodically to keep the measurement
hardware calibrated. Traditionally, a monolithic code construct performs all of these tasks. However, since some of these
activities may only be peripherally related, it makes more sense to place these tasks in different threads of execution.
Each thread of execution can be thought of as a path through the code. These threads of execution may be either regular
processes or lightweight processes, and they may or may not share resources. In this paper, the term thread is used to mean
a thread of execution, not necessarily to denote the preference of a lightweight process over a regular one. For instance, it
would make sense to keep the task that performs the measurements separate from the task that checks the front panel for
user input.

Fusion provides us with information on how to divide the behavior of the system into objects, but Fusion does not address
the needs of our real-time multitasking system. It does not address how the system of objects can be mapped into different
threads of execution, nor does it address the issues of interprocess communication with messages or semaphores. Lastly, no
notation in Fusion can be used to denote the threading issues in the design documents.

Thread Factoring
We extended Fusion thread support in two ways. First, in the area of design we tried to determine how to break the system
into different threads of execution or tasks. Second, in the area of notations we wanted to be able to be able to denote these
thread design decisions in the design documents.

Our main emphasis was on keeping these extensions lightweight and easy to learn and keeping our modifications to the
minimum needed to do the job. We wanted a simple system that would be easy to learn, rather than a powerful one that only
a few people could understand.

We adopted portions of Buhr and Casselman’s work on time-thread maps to deal with thread design issues such as the
identification and discovery of threads of control within the system.6,7,8 In our design, a time-thread map is essentially a
collection of paths that are superimposed on a system object model (see Fig. 9). These paths represent a sequence of
responsibilities to be performed throughout the system. These responsibility sequences are above the level of actual data or
control flows, allowing us to focus on the responsibility flow without getting involved in the details of how the exact control
flow takes place. We then applied the process of thread factoring, as described by Buhr and Casselman, where we brought
our domain knowledge to bear on decomposing a single responsibility path into multiple paths. These paths were then
mapped into threads of execution throughout our system.

SweepMR

SweepFI

Hardware

MarkerMR Display Item

Display List
Interpreter

Display
Hardware

Thread Start

Thread End

Fig. 9. An example of a time-thread map.



Article 10 February 1997 Hewlett-Packard Journal      10

With the Fusion method, we had already identified the areas of responsibility. We then used this thread heuristic at the
beginning of our design phase in those places where we had already identified the objects in the system, but where we had
not yet designed the interaction among the objects. We dealt with the concurrency issues at the same time that we dealt with
the object interaction graphs shown in Fig. 10. We also performed thread factoring and divided the system into multiple
threads.

sweepmr:MR sweepfi:FI

lo:HW

if:HW

adc:HW

do_it()

receive(...)

A1 go(...)

B1.4

B1.1

B1.2

B1.3alarm()

set(...)

C1.3.1

set(...)

set(...)0

Fig. 10. An object interaction graph (OIG). This representation is an extension of a Fusion object interaction graph.

The letters in front of the OIG numbers associate a thread of execution with a particular message.

Message and OIG Number

The thread map in Fig. 11 depicts an example of thread factoring an application in our system. Using Fusion, we identified
a path of responsibility through the objects CI, MR, and FI (client interface, measurement results, and fundamental
information). Inputs enter the system through CI, and the responsibility for handling the input goes through the various
layers of abstraction of MR and FI. Since information from the measurement hardware enters the system through FI, FI may
have to wait for information. The information then flows goes back up fundamental information to MR and then possibly to
other applications.

Hardware Hardware

CI CI

MR

FI FI

(a) (b)

Synchronization
Points

Fig. 11. A thread map showing an example of thread factoring. (a) Before factoring. (b) After factoring.

MR

CI
MR
FI

Client Interface
Measurement Results
Fundamental Information

Clearly, the system worked fine as it was. However, we wanted to find where we could break the thread of execution and
perform thread factoring. Many issues, such as questions about performance, were raised at this point. For example, if the
thread is executing in part A of the system, it may not be available to perform services in part B of the system. Thus, in our
system, we could have a thread pick up a user request to change the measurement hardware settings and then traverse the



Article 10 February 1997 Hewlett-Packard Journal      11

code in the hardware setup routines to perform the hardware adjustments. However, while it was doing so, the thread would
not be available to respond to user requests. This might impact the rate at which the system was able to service these
requests. Therefore, we broke the user thread at the CI object boundary and gave that layer its own thread.

Next, we tried to find a place where we could break the thread that goes through MR and FI. Clearly, the place to break was
between MR and FI. Making the break at this point gave us several flexibilities. First, we would be able to wait at the FI
thread for data and not have to be concerned with starving MR. Second, developing components that were all active objects
allowed us to mix and match components much more easily.

Mapping a system onto threads is a design-time activity. Thinking about the thread mapping at this stage allowed us to
consider concurrency and the behavioral issues at the same time.

Thread Priorities
After we had identified the threads of execution, we needed to assign priorities to the threads. Note that this is mostly a
uniprocessor issue, since priorities only provide hints to the operating system as to how to allocate CPU resources among
threads.

In the firmware framework project, we took a problem decomposition approach. We reduced the architecture of our system
to a pipeline of simple consumer/producer patterns (see Fig. 12). At the data source we modeled the analog-to-digital
converter (ADC) interrupts as a thread producer generating data that entered the system with FI as consumer. FI, in turn,
served as the producer to MR, and so forth. Inputs may also enter the system at the user input level via either the front panel
or a remote device.

Fundamental
Information

Measurement
Results

Measurement
Hardware Display Item

Display List
Interpreter

Display
Hardware

Producer Consumer Producer

Producer Consumer

Consumer

ConsumerProducer

Spectrum Analyzer Application Display Application

ConsumerProducer

Fig. 12. An example showing some of the producer/consumer chains used in the firmware framework project.

We decided to give the highest priority to those threads that introduced data into the system from the physical environment
so that they could respond to events in the environment quickly. Those threads included the user input threads and the ADC
interrupt thread.

For thread priorities in the rest of the system, we considered three possibilities: that the producer priority was higher than
that of the consumer, that the two priorities were equal, or that the consumer priority was higher than the producer priority.
We ruled out setting the priorities to be equal because that would be equivalent to having no policy and would just let the
systems run without any direction.

Making the producer priority higher than that of the consumer made sure that data was generated as quickly as possible.
Unfortunately, since we continuously acquired data in our system, our data generation could go on forever unless we
explicitly stopped the process and handed control to the higher level.

Alternatively, if we gave the consumer thread the higher priority, it would have priority over the producers with regard to
CPU time. However, without the data generated from the producers, the consumers would block and be unable to run. Thus,
if the data consuming chain had a higher priority than the data producers, the threads would run when data was available for
them to process. This eliminated the necessity for the consumers to give up the CPU explicitly.

Threads and Synchronization
Another thread issue we considered was how to present the thread communication and synchronization operating system
primitives to our system. We saw two alternatives. We could either expose the system level operating system calls to the
system or encapsulate the operating system primitives inside objects so that the rest of the objects in the system could talk
to these objects. For other system objects, it would be like communicating with nonoperating system objects.

We chose the latter approach. We created operating system objects such as tasks and semaphores to encapsulate operating
system functionalities. This approach allowed us to model the operating system primitives as objects so that they would fit
in well with the Fusion process and give us a clean model and good code reuse. This approach also had the side affect of



Article 10 February 1997 Hewlett-Packard Journal      12

isolating our system from the operating system API. There were drawbacks with this approach, but they were not major.
Reference 7 contains more details about both of these approaches.

Thread Notation
We used thread notations within our Fusion diagrams in two ways. First, we used the thread map notations to show sketches
of thread flows (Fig. 11). These simple notations gave us a general idea of the thread activities in the system. We adopted
only a few of the notations that Buhr and Casselman use, employing the paths and waiting places that show the behavior of
the system. We did not use their notation to handle the different types of synchronizations because we did not feel that this
was the level of detail appropriate for what we needed. This method gave us an overview of what the system looked like
without bogging us down in the details of how communication and synchronization were implemented.

For our second method of using thread notations, we extended the Fusion object interaction graph (OIG) notations to
describe threads more formally (Fig. 10). We added letters in front of the OIG numbers to associate a thread of execution
with a particular message. We also experimented with coloring the threads.

Design Patterns
Design patterns have become popular in the object-oriented world only recently. Design patterns evolved from the
realization that certain software engineering patterns are repeated. These patterns are not at the implementation level, but at
the level of component interactions. The idea here is to look at software design problems at a higher level so that recurring
patterns can be identified and a common solution applied.

For instance, there is often a need in software systems for one or more objects to be notified if the state changes in another
object. For example, if the value in a database changes, the spreadsheet and the word processor currently displaying that
value need to change their displays. The observer pattern, described in the design patterns book,3 shows how to set up the
relationship among these objects. It describes when a pattern may be appropriate for solving the notification problem and
some implementation hints and potential pitfalls.

Design patterns came to our attention a year or so into the project. By then, we had already completed most of the design.
Therefore, we did not use them as templates to build the system from scratch. Instead, we used the design pattern catalog
to validate designs. In looking through our system, we found potential applications for over half the patterns in the design
patterns book. We then compared our design with those patterns.

We found patterns to be useful for design validation. In some places, they helped us improve the design. For instance, the
hardware components are accessed through hardware handles, which are very similar to the protection proxies described
in the patterns book. The hardware architecture itself is an example of a composite pattern. A composite pattern is an
organization of objects in which the objects are arranged in a tree-like hierarchy in which a client can use the same
mechanism to access either one object or a collection of objects. The descriptions of composite patterns in the design
patterns book also helped us to identify and clarify some of the issues related to building composites.

In other areas in the system, we found our analysis to be more detailed because of our extensions to identify objects using
the client-policy-mechanism framework. We have an event mechanism in the system to inform some component when an
action has occurred. This mechanism is very similar to that of the observer pattern mentioned earlier. The observer pattern
describes two components: a publisher and a subscriber, which define a methodology for handling events.

Our event pattern is slightly more sophisticated. We placed the event policies into a third object, so we have three
components in our event pattern: a subscriber, an actor (publisher), and the event itself. Actors perform actions, and
subscribers want to know when one or more actors have performed some action. The subscriber may want to be notified
only when all of the actors have completed their actions. Thus, we encapsulated policies for client notification into the event
objects. An actor is only responsible for telling events that it has performed some action. Events maintain the policy that
determine when to notify a subscriber.

This arrangement gives more flexibility to the system because the design-patterns approach allows the policy for notification
to be embedded in the actor. In our case, we also have the freedom to customize the policy for different instances of the
same actor under different situations.

We feel that the main advantage of not using the patterns until the system design is done is that the developer will not fall
into the trap of forcing a pattern that resembles the problem domain into the solution. Comparing our problem domain with
those described in the patterns book helped us to understand more about our context and gave us a better understanding of
our system. Also, as many other object-oriented practitioners have reported, we also found patterns to be a good way to talk
about component interaction design. We were able to exchange design ideas within the team in a few words rather than
having to explain the same details over and over again.

Scenarios
Part of our system requirements included developing scenarios describing the behavior of the system. Scenarios describe the
system output behavior given a certain input. These scenarios are similar to the use cases described in reference 1 and are
part of the Fusion analysis phase. However, for people not conversant in object-oriented methods, these scenarios often do



Article 10 February 1997 Hewlett-Packard Journal      13

not have much meaning because the descriptions are far above the implementation level. Whenever we presented our
analysis and design models, our colleagues consistently asked for details on what was happening in the system at the design
level. Although Fusion documents provided good overviews of the system as well as excellent dynamic models for what
happened in each subsystem, people still wanted to see the dynamics of the entire system.

To explain how our system works, we developed scenarios during the design phase. These scenarios were a collection of
object interaction graphs placed together to show how the system would work, not at an architectural level but at a design
and implementation level. We used the feedback we received from presenting the scenarios to iterate the design.

The Fusion model is event-driven, in that an event enters the system and causes a number of interactions to occur. However
we had a real-time system in which events happen asynchronously. We needed scenarios that were richer than what the
object interaction graph syntax could provide.

For example, our instrument user interface allows the user to modify a selected parameter simply by turning a knob, called
the RPG (rotary pulse generator). One attribute by which our customers judge the speed of our instruments is  how quickly
the system responds to RPG input. The user expects to get real-time visual feedback from the graphics display. The empirical
data suggests that real-time means at least 24 updates per second. As the layers were integrated, we looked at the scenario
in which the user wanted to tune the instrument by changing a parameter (e.g., center frequency). This scenario led to
questions such as: How would the system’s layers behave? What objects were involved? What were the key interfaces
being exercised? Were the interfaces sufficient? Could the interfaces sustain the rate of change being requested? What
performance would each of the layers need to deliver to achieve a real-time response from the user’s point of view? The
answer to these questions led to a refinement of both the design and the implementation.

These design-level scenarios provided a better idea of what would happen in the system and presented a more dynamic
picture. Since the scenarios encompassed the entire system, they gave the readers a better view of system behavior. We
found them to be good teaching tools for people seeking to understand the system.

We also found that instance diagrams of the system objects helped us to visualize the system behavior. A diagram of the
instantiated objects in the system provided a picture of the state information that exists in the system at run time.

Reuse
To build reuse into a system, the development method has to support and make explicit the opportunities for reuse. The
analysis extensions described earlier serve to facilitate the discussion of reuse potential in the system. The design is driven
by the biases encoded into the analysis.

At the end of the first analysis and design pass, an entity relationship diagram will exist and a rudimentary class hierarchy
will be known. The more mature the team in both object-oriented technology and the domain, the earlier the class hierarchy
will be identified in the development method. Additional information can be gathered about the level of reuse in the class
hierarchy during the analysis and design phase. These levels of reuse are:

� Interface reuse

� Partial implementation reuse

� Complete implementation reuse.

The ability to note the level of reuse in the work products of the development method is valuable to the users of the object
model. A technique developed in this project was to color code the object model. Fig. 13 shows two of these classes.

Except for defect fixes, complete implementation classes cannot be modified once they are implemented. This type of color
coding aids developers to know which components of the system can be directly reused just by looking at the object model.

Process Definition

The pursuit of object-oriented technology by a team necessitates the adoption of formal processes to establish a minimum
standard for development work. This is especially true if the team is new to object-oriented technology. Various members of
the team will develop their understanding of the technology at different rates. The adoption of standards enables continuous
improvements to the process while shortening the learn time for the whole team.

In the firmware framework project, we adopted processes to address issues like communication, quality, and schedule. We
customized processes like inspections and evolutionary delivery to meet our needs. It is important to keep in mind that
processes described in the literature as good practices need to be evaluated and customized to fit the goals of a particular
team. The return on investment has to be obvious and the startup time short for the process to have any positive impact on
the project.

Coding standards, for example, can help the team learn a new language quickly. They can also be used to filter out
programming practices that put the source code at risk during the maintenance phase of the project. They also facilitate
the establishment of what to expect when reading source code.



Article 10 February 1997 Hewlett-Packard Journal      14

start()
stop()
preset()
boolean
bucket_interval(time)
time sample_interval()
setup()

setup()setup()

Data Acquisition

Hardware

IFDisplay

Assembly

ADC

start()
stop()

Timer

set_interval(time)

Device

VideoWD24

setup()

BullADC

MUX Made

MosqADC

TestResult self_test()

Classes that provide interface reuse.

Classes that provide complete implementations.

Fig. 13. An example of an object model of the hardware layer that

is coded to show the reuse status of the various objects.

Evolutionary Delivery
We partnered with HP’s Software Initiative program to develop what is now known as EVO Fusion.9,10 EVO is a management
process that constructs a product in small increments. After each increment is completed, the development process is
examined for improvements that might contribute towards the successful completion of the next increment.

Each increment can have an analysis, design, code, and test phase. The product evolves over time into the desired product
through repeated execution of small development cycles that add greater and greater functionality. This process helps to
focus the team and increases the probability that schedules will be met.

Inspections
Much has been written about the value of inspections to software development. Though much of the literature focuses on
product quality, the inspection process also identifies (that is, makes explicit) other issues. Once identified, these issues can
be quantified into high, medium, and low   risk factors. Their impact on the success of the project can be ascertained and the
appropriate action can be taken to manage their resolution in a timely manner. Institution of an inspection process thus
provides the project manager and the project team with an additional means by which to gather information pertinent to
project completion.

In a project, the use of a development method like EVO Fusion, coupled with an inspection process, facilitates the
discussion of issues that relate to requirements, software architecture, software integration, and code development. The
benefits to the team are significant because these processes enable members to understand the product and its functionality
long before the debug phase begins.

Legacy Systems
In many cases, it is not possible to generate a system completely from scratch without using legacy code. The firmware
framework project was no exception.



Article 10 February 1997 Hewlett-Packard Journal      15

We found that the most straightforward approach is to encapsulate the legacy code inside objects. This works for systems
that provide services to client objects. It also works for legacy subsystems that act as clients, such as language parsers.
These parser components are not good framework citizens because they already have their own definition of the server
interface they expect, which may not coincide with the object-oriented design.

We feel that the proper approach is to perform the object-oriented analysis and design without regard for the legacy
system first, and then encapsulate the legacy code inside the proper objects. There is a strong temptation to design the
object-oriented system around the existing legacy code, but in our experience the legacy system may not have been designed
with the appropriate object-oriented principles. Thus, allowing it to affect the analysis may lead to a faulty design.

Summary
Fusion is the result of the evolution of a long line of software development processes. Like its predecessors, Fusion has
its benefits, problems, and areas for improvement.

Benefits. The benefits we derived using Fusion include:

� Lightweight and easy to use. We found Fusion to be easy to learn. There is lot of guidance in the process that
leads the user from step to step. It is not mechanical, but the user will not be wondering how to get from one
step to the next.

� Enforces a common vocabulary. Often in architecting systems, the different domain experts on the team will
have their own definitions of what certain terms mean. Generating data dictionary entries at the analysis phase
forces everyone to state their definitions and ensures that misunderstandings are cleared up before design and
implementation.

� Good documentation tool. We found that the documents generated from the Fusion process served as excellent
documentation tools. It is all too easy, without the rigor of a process, to jump right in and start coding and do
the documentation later. What often happens is that schedule pressure does not allow the engineer to go back
and document the design after the coding is done.

� Hides complexity. Fusion allows a project to denote areas of responsibility clearly. This feature enables the
team to talk about the bigger picture without being bogged down in the details.

� Good separation between analysis and design. Fusion enforces a separation between analysis and design and
helps in differentiating between architectural and implementation decisions.

� Visibility graphs very useful. The visibility graphs are very useful in thinking about the lifetime of the server
objects. Simply examining the code all too often gives one a static picture and one does not think about the
dynamic nature of the objects.

Problems. The problems we encountered with the Fusion method included:

� Thread support. Although the Fusion method models the system with a series of concurrent subsystems, this
approach does not always work. The threads section of this article describes our problems with thread
support.

� Complex details not handled well. This is a corollary to Fusion’s ability to hide details. Do not expect Fusion to
be able to handle every last detail in the system. In instrument control, there are a lot of complex data
generation algorithms and interactions. Although in theory it is possible to decompose the system into smaller
subsystems to capture the design, in practice there is a point of diminishing returns. It is not often feasible to
capture all the details of the design.

Areas for Improvement. The following are some of the areas in which the Fusion method could be improved:

� Concurrency support. We would like to see a process integrated with the current Fusion method to handle
asynchronous interactions, multitasking systems, and distributed systems.

� CASE support. We went through the Fusion process and generated our documentation on a variety of word
processing and drawing tools. It would have been very helpful to work with a mature CASE tool that
understands Fusion. Some of the functionalities needed in such a tool include: guidance for new Fusion users,
automatic generation of design documents, and automatic checking for inconsistencies in different parts of the
system. Throughout the course of our project we evaluated several Fusion CASE tools, but none were mature
enough to meet our needs.

Acknowledgments
The authors wish to thank the other members of the firmware framework team: David Del Castillo, Manuel Marroquin, Steve
Punte, Tony Reis, Tosya Shore, Bob Buck, Ron Yamada, Andrea Hall, Brian Amkraut, Vasantha Badari, and Caroline Lucas.
They lived the experiences and contributed to the knowledge described in this paper. We’d like to also recognize Todd
Cotton from the HP Software Initiative (SWI) team who, as a part-time team member, helped us develop our EVO process.
Our gratitude also goes to the rest of the HP SWI team for the support they gave us during the project. Thanks to Derek
Coleman for helping us use Fusion. Finally, we would like to express our appreciation to Ruth Malan; without her
encouragement this paper would not have been possible.



Article 10 February 1997 Hewlett-Packard Journal      16

References
1. I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.
2. D. Coleman et al., Object-Oriented Development: the Fusion Method, Prentice Hall, 1994.
3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley, 1995
4. R. Malan, R. Letsinger, and D. Coleman, Object-Oriented Development at Work: Fusion in the Real World,

Prentice Hall, 1996.
5. R. Wirfs-Brock, “Object-Oriented Design: A Responsibility-Driven Approach,” OOPSLA ‘89 Conference

Proceedings, pp. 71-75.
6. R.J.A. Buhr and R.S. Casselman, “Timethread-Role Maps for Object-Oriented Design of Real-Time and Distributed

Systems,” OOPSLA ‘94 Conference Proceedings, pp. 301-316.
7. R.J.A. Buhr and R.S. Casselman, Use of CASE Maps for Object-Oriented Systems, Prentice Hall, 1996.
8. R.S. Casselman et al., Notation for Threads, SCE-92-07, Department of Systems and Computer Engineering,

Carleton University, September 1992.
9. T. Cotton, “Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for Fusion,” Hewlett-Packard

Journal, Vol. 47, no. 4, August 1996, pp. 25-38.
10. T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.

Microsoft and Windows are  U.S. registered trademarks of Microsoft Corporation.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/97feb/fe97a11.htm


Article 11 February 1997 Hewlett-Packard Journal      1

An Approach to Architecting Enterprise

Solutions

A frequently mentioned ailment in healthcare information
management is the lack of compatibility among information
systems. To address this problem, HP’s Medical Products Group
has created a high-level model that defines the major architectural
elements required for a complete healthcare enterprise information
system.

by Robert A. Seliger

HP’s Medical Products Group (MPG) produces medical devices such as patient monitors and ultrasound imaging systems,
which obtain physiological data from patients, and clinical information systems, which document, retrieve, and analyze
patient data.

In December 1994, MPG directed its architects to define and drive the implementation of an open, standards-based MPG
application system architecture that would enable:

� Improved application development productivity

� Faster times to market

� Seamless integration of applications developed by MPG and its partners

� Integration with contemporary and legacy systems in an open standards-based environment

To meet these objectives and to help establish MPG as a leader in healthcare information systems, the Concert architecture
was conceived. Concert is a software platform for component-based, enterprise-capable healthcare information systems.

The primary objective of Concert is to enable the decomposition of healthcare applications and systems of applications into
sets of interconnectable collaborative components. Each component implements important aspects of a complete healthcare
application or system of applications. The components work together to realize fully functional applications and systems of
applications.

A component-based approach was pursued to leverage the fundamental precepts of good software engineering:
decomposition, abstraction, and modularity. We reasoned that an architecture that facilitated decomposing large complex
systems into modular components and abstracted the details of their implementation would contribute to development
productivity. The ability to use these components in a variety of applications would expedite time to market.

Carefully specified component interfaces would enable flexible integration of components in a seamless manner. Openly
publishing these interfaces would enable components developed by MPG’s partners to interoperate with MPG’s components.
The judicious use of healthcare and computing standards would enable integration with systems based upon other
architectures.

Concert was developed by MPG in conjunction with HP Laboratories and the Mayo Clinic, a strategic MPG partner. It serves
as the technical cornerstone for MPG’s group-wide initiative to provide better enterprise solutions for its customers. Key
aspects of the architecture have also been applied by HP Laboratories and the Mayo Clinic to develop a prototype electronic
medical record system.

Concert also serves as the foundation for the technical development effort of the Andover Working Group for Open
Healthcare Interoperability. This MPG-led healthcare industry initiative was been formed to achieve enterprise-wide
multivendor interoperability (see Subarticle 2).

Concert currently consists of the following elements:

� A general reference model that organizes the architecture of healthcare enterprise information systems into a
key set of architectural ingredients

� A model for software components that can be implemented using CORBA-based1 or Microsoft  OLE-based2

technologies

� An initial set of Concert components including their interfaces and the policies that govern the patterns of
interaction between the components

� An approach for organizing Concert component interfaces to represent component application development,
system integration, and system management capabilities

http://www.hp.com/hpj/97feb/fe97a11a.pdf


Article 11 February 1997 Hewlett-Packard Journal      2

� An initial information model that provides an object-oriented description of healthcare terms, concepts,
entities, and relationships to establish a common clinical basis for Concert components and the applications
developed from them.

Concert Components
To facilitate the description of the Concert component model, an example of one of the components that MPG has developed
will be used. The component, called an enterprise communicator, is at the heart of the enterprise communication
framework (ECF) that MPG is developing in conjunction with other healthcare vendors and providers that form the Andover
Working Group.

An enterprise communicator is a software component that facilitates healthcare standards-based data interchange between
healthcare systems and applications within a healthcare enterprise. Different types of communicators encapsulate different
healthcare standards. The particular communicator that MPG is currently developing encapsulates the Health Level 7 (HL7)
2.2 data interchange standard.3 Fig. 1 shows a system based on enterprise communicators.

HL7
ApplicationHL7

Application

HL7
Application

HL7
Application

HL7
Application

HL7
ApplicationHL7

Application

HL7
Application

HL7
Application

HL7
Application

Enterprise
Communicator

Enterprise
Communicator

Enterprise
Communicator

Enterprise
Communicator

Enterprise
Communicator

Network

CORBA

CORBA
CORBA

CORBA
CORBA

CORBA

CORBA

CORBA

OLE Automation

OLE AutomationOLE Automation

Characters/TCP Characters/TCP

Hospital Pharmacy

Affiliated Laboratory

Patient ClinicHospital Patient Care Unit

Fig. 1. A healthcare system based on enterprise communicators and the HL7 data interchange standard.

HL7 is a widely used healthcare electronic data interchange standard. Its primary contribution is the specification of a set of
messages that healthcare systems can exchange to share clinically relevant data. Examples include messages that enable
applications to obtain the results of laboratory tests from the applications that have access to this data.

The HL7 standard is not intended to be particularly prescriptive in terms of messaging technology or how messaging
services should be implemented. This has led to a variety of custom HL7 implementations based on a range of technologies.
A typical implementation employs specially formatted character-encoded messages and point-to-point network or serial-line
connections. An example of a character-encoded HL7 message is shown in Fig. 2.

In the Concert-based model, applications employ enterprise communicators to broker their HL7 data interchange needs.
Enterprise communicators provide applications with the necessary messaging capabilities, such as guaranteed message
delivery and multicasting (i.e., sending several messages at once). Enterprise communicators also present HL7 messages as
object-oriented abstractions using both CORBA and OLE automation technologies. This eliminates the need for applications
to parse the messages to extract the encoded data.

In addition, for legacy integration, communicators support TCP/IP interfaces through which applications that are not
object-oriented can send and receive character-encoded HL7 messages.

Why Components?
The concept of component-based systems has become increasingly popular over the last several years. There are currently
many definitions of components and a variety of tools and technologies have emerged to facilitate developing
component-based systems. Many of the general concepts about what a component is are similar across all of these
definitions. However, there appears to be little agreement on the granularity of a component. Granularity depends on how
much functionality a component represents and how much code and complexity are embodied within a component
implementation.



Article 11 February 1997 Hewlett-Packard Journal      3

MSH|^~\&|HP|HOSPITAL|AWG|GENERAL CLINIC|199608271353|
ADT^AO1|56844_1_AA|T|2.2|<cr>
EVN|AO1|199608271353|<cr>
PID|l| |102983|3106|DOE^JOHN^^SR^^ | |19450112|M|
AWG^TEST^^^^~ANDOVER^GROUP^^^^ |H|1400 MAIN ST^ ROOM 6263^ANDOVER^ 
MA^10810| |(508)555–1022|862–1022| |M|CAT|14563|838–29–4938|
<13>NK1|1|DOE JOAN B |CHD|101 MAIN STREET APT^2A^BOSTON^MA^O5404|
(508)555–0000|(508)555–0000|<cr> 
NK1|2|DOE JANE^^^^|CHD|434 NORTH STREET^APARTMENT 5B^CHELMSFORD^MA^
05401|(508)555–1111| |<Cr> 
PV1|1|I|1N^107 A|ELE| | |36^HEART^THOMAS^MD^^^| | |IMX| | | |1| |Y|
36^HEART^THOMAS^MD^^^|0|14563| | | | | | | | | | | | | | | | | | | | |
| | 1W^102^W| |199608191015|<cr>
PV2| |s| |<cr>

basically means ...

Admit patient John Doe Sr., whose wife is Joan and next-of-kin is Jane, and whose physician is Dr. Heart, to General Clinic

Fig. 2. A character-encoded HL7 admit patient message.

In Concert, components tend to be medium-to-large-grained objects.4 For example, a Concert component might be
implemented by what is traditionally thought of as an executable program, as is the case for an enterprise communicator.
Alternatively, a group of Concert components might be packaged within a library. However, a Concert component is rarely
as small as a single C++ or Smalltalk object.

In general, a Concert component is a portion of an application system that:

� Implements a substantial portion of the overall application system’s capabilities

� Represents its capabilities via one or more modularly defined binary interfaces

� Can be developed independently of other components

� Is capable of efficiently communicating with other components over a network

� Is the fundamental unit of configurability, extensibility, replaceability, and distribution

� Is the basis for an open system through the publication of its interfaces.

In other words, a Concert component represents a significant portion of an overall application system, but is small enough to
enable efficient and flexible composition with other components to form full-fledged applications and application systems.

A key motivation for a component-based architecture is that it makes accomplishing the following architectural objectives
much easier.

� Simplification. Components can make the approach to decomposing a complex application system into smaller
simpler pieces tangible and precise.

� Replaceability. Existing components can be readily replaced with new implementations as long as the new
component supports the same interfaces as the component it replaces.

� Configurability. Components provide a modular, precise, and manageable basis for configuring a system.

� Extensibility. New components with new capabilities can be added to an existing system in a modular and
organized manner. The risk of breaking existing capabilities that are well-encapsulated in existing components
is minimized. In addition, new capabilities that are added to existing components can be represented by new
component interfaces that represent the new capabilities without requiring changes to existing interfaces.

� Independence. The interfaces between components define the “contract” between components that can enable
independent development as long as the contracts are respected.

� Scalability. Components can be physically distributed or alternatively collocated depending upon the
computing infrastructure available and desired price/performance profile. The component interfaces define
what components communicate about, and this communication can be realized using same-machine or
network-based mechanisms.

� Stability. A variety of tools, technologies, and design methods can be employed to implement the components,
thereby enabling evolution of the implementation technology, tools, and methods without violation of the
architecture.

� Business-Centeredness. The efficient and timely realization of the architectural objectives listed above is the
basis for a significant competitive advantage.



Article 11 February 1997 Hewlett-Packard Journal      4

To achieve these objectives, Concert specifications primarily emphasize how application systems are assembled from
components. This approach provides a great deal of latitude for application developers to define what capabilities their
application systems will actually provide. Perhaps most important, the architecture also enables product teams to put more
focus on developing the content of their applications because they can leverage a standard approach to constructing their
application systems.

Component Interfaces
Concert components implement object-oriented interfaces. An object-oriented interface is a named grouping of semantically
related operations that can be performed on a component. A component that implements a particular interface implicitly
supports the functionality contract implied by the interface.

For example, among the interfaces that an enterprise communicator implements is the ApplicationConnect interface. This
interface enables an application to connect to and disconnect from a communicator. Only connected applications can send
and receive HL7 messages.

Components that implement similar capabilities represent these capabilities via the same interface. For example, any
Concert component that requires its client applications to explicitly connect and disconnect might implement the
ApplicationConnect interface. The effect of connecting and disconnecting would depend upon the type of component, but the
policies governing when and how to use the interface would be the same.

Each object-oriented interface enables a subset of a component’s overall capabilities to be accessed and applied. A
component’s full set of object-oriented interfaces enables a component’s full array of capabilities to be accessed and applied.
For example, another interface that is implemented by an enterprise communicator is MessageManager. This interface enables
a connected application either to create a new message that can be populated with data and sent or to obtain a message that
the communicator has received from another application.

Many of the details of the Concert model for software components come from the OMG’s Object Management Architecture
(OMA). The most notable OMA ingredient is the use of the OMG Interface Definition Language (OMG IDL) for specifying a
Concert component’s object-oriented interfaces independent of the technology used to implement the component and its
interfaces.

OMG IDL serves as the software equivalent of the schematic symbols that electrical engineers use to diagram circuits. For
example, the symbol for an AND gate clearly conveys its role without relying on descriptions of the underlying circuitry or
fabrication technology (e.g., CMOS, TTL, etc.).

OMG IDL provides a standard and formal way to describe software component interfaces. Further, when applied within the
context of an overall component-based architecture, formally specified interfaces can be used to create a level of precision
that helps ensure that important architectural features and principles are reflected in products that are eventually developed.
For example, components that constitute a particular product can be examined to see if they correctly implement the
necessary interfaces. The role that interfaces play in adding precision to a software architecture is illustrated in Fig. 3.

Products

Abstract

Precise

Concrete

Architecture

Interface Specifications

Fig. 3. An illustration of the role that interfaces play in adding precision to a software architecture.



Article 11 February 1997 Hewlett-Packard Journal      5

Another advantage of defining interfaces is that they can provide a shorthand for describing components. The Concert
specification currently consists of less than forty interfaces. Just the name of the interfaces that a component implements is
often all one needs to understand how to use the component.

For example, the enterprise communicator interface ImplementationInformation allows access to implementation information
about a communicator, including its product number, software revision, and when it was installed on its current host. The
interface HostInformation provides access to information about the computer that is hosting an enterprise communicator,
including the host’s network name and the type of operating system it supports.

A simplified OMG IDL specification for an enterprise communicator’s ApplicationConnect interface is shown in Fig. 4. This
specification conveys the following information about the interface:

� The name of the interface is ApplicationConnect.

� The interface supports two operations: connect and disconnect. An application that wants to connect to an
enterprise communicator performs the connect operation on the communicator’s ApplicationConnect interface. An
application that wants to disconnect performs the disconnect operation. In either case, the application
identifies itself by setting an appropriate value for the input parameter which_application.

� Under normal conditions, neither operation returns any data. However, they can raise exceptions. An operation
that has encountered an abnormal condition can communicate this fact to its client by raising an exception.
When an operation completes, its client is able to determine whether or not the operation completed normally
or has raised an exception.

interface ApplicationConnect : Composable {

 exception UnknownApplication {};

 exception AlreadyConnected {};

 exception NotConnected {};

 void connect (in ApplicationIdentifier which_application)
   raises (UnknownApplication, AlreadyConnected);

 void disconnect (in ApplicationIdentifier which_application)
   raises (UnknownApplication, NotConnected);

} ;

Fig. 4. An example of an interface definition.

Different types of exceptions can be defined, each of which represents a different abnormal condition. The exception
UnknownApplication indicates that the application identified by the parameter which_application is not known to the enterprise
communicator. The exception AlreadyConnected indicates that the application that is trying to connect is already connected to
the enterprise communicator. The exception NotConnected indicates that an application that is trying to disconnect is not
currently connected to the enterprise communicator.

Another important characteristic of the ApplicationConnect interface is that it inherits the definition specified for the interface
Composable, which is described in the next section.

Multiple Interfaces. Additional ingredients of the Concert model for components were leveraged from Microsoft’s Component
Object Model (COM). While much of COM describes the low-level conventions for performing operation invocations on
objects, COM also motivates the concept of representing a component through multiple distinct interfaces.

In COM, a client must explicitly ask a component whether it supports a particular interface before it can access the
interface. If the component does indeed support the interface, the client can use it. Otherwise, the client must seek another
interface, or try to make do with the interfaces that are supported. See Subarticle 3, “Multiple Interfaces in COM.”

Although typically described by Microsoft as a way to evolve component functionality through the addition of new interfaces
and as a way to simplify perceived problems with object-oriented inheritance, the real strength of multiple interfaces is the
ability to model complexity.

For example, in Concert, components represent significant subsets of the overall functionality of an application or system of
applications. It would be unwieldy to try to represent a component’s complete set of capabilities through a single interface. It
would be unnatural in many cases to impart modularity by organizing these interfaces using inheritance.

As a simple real-world example of multiple interfaces, consider the interfaces that might represent an employee who is also
a father and a baseball fan. It is unnatural to model this employee’s interfaces using an inheritance relationship because the
interfaces are semantically unrelated. It would be awkward to define a single employee-specific interface because the

http://www.hp.com/hpj/97feb/fe97a11c.pdf


Article 11 February 1997 Hewlett-Packard Journal      6

advantages of developing distinct models for the concepts of the employee as father and baseball fan become obscured.
However, modeling the employee as supporting multiple interfaces is essentially how things work in the real world.

Concert’s adaptation of the COM concept of multiple interfaces is referred to as interface composition. This is because a
component’s functionality is represented by a composition of distinct interfaces. The interfaces that the component chooses
to include in this composition can vary over time as a function of the component’s internal state or because its underlying
implementation has changed.

The interfaces in a Concert interface composition are referred to as composable interfaces. In Concert, all composable
interfaces are derived from the base interface Composable. The interface Composable provides functionality similar to COM’s
IUnknown:. It supports a method similar to QueryInterface which enables a component’s client to determine whether the
component implements a particular interface, and if so, to obtain a reference to the interface. For convenience, this querying
capability is available via any Composable interface.

In addition, every component implements the interface Principal, which is also derived from Composable. In addition to
providing a way for a component’s clients to interrogate a component about the interfaces it supports, Principal also enables
clients to obtain a list of all of the interfaces that the component currently implements. For some clients the ability to obtain
a list of available interfaces is preferred to the technique of interrogating for interfaces one at a time.

The primary difference between COM and Concert in terms of support for multiple interfaces is that in COM, the concept
only applies to components implemented using COM-based technology. In Concert, the concept has been easily layered on
top of a variety of technologies, including COM, CORBA, and even Smalltalk and C++. This enables Concert to apply a
powerful architectural notion in a technologically flexible manner. Fig. 5 shows an enterprise communicator’s
implementation of multiple interfaces.

HL7 Enterprise CommunicatorPR

AC

CU

MM IIHI

OPLM OC

AC
CU
HI
II
LM

Application Connect
Communicator
Host Information
Implementation Information
Log Manager

MF
MM
OC
OP
PR

Message Filter
Message Manager
Object Configurator
Operational Control
Principal

Fig. 5. An enterprise communicator’s multiple interfaces.

MF

Channels. Concert’s object-oriented component interfaces are primarily intended to be implemented using CORBA-based or
OLE-based technologies. However, certain component capabilities are better suited for other representations that are not
necessarily object-oriented or for implementations using technologies other than CORBA or OLE. For example, backwards
compatibility with existing standards or stringent performance constraints might dictate the use of other technologies.

In Concert, a component can have interfaces that are not object-oriented. These interfaces are referred to as channels.
Channels generally do not offer access to the full set of component capabilities that are represented by a component’s
object-oriented interfaces, but they do provide an architectural basis for representing alternative communication
mechanisms.

For example, an enterprise communicator implements TCP/IP channels over which it can send and receive character-
formatted HL7 messages. Contemporary applications use a communicator’s object-oriented interfaces to send and receive
messages, but legacy applications can use a communicator’s TCP/IP channels.

Interface Perspectives. During the early development of Concert, most of the emphasis was on the interfaces that represented
a component’s application capabilities. These interfaces support the ability to use the component to construct healthcare
applications.

For example, the application capabilities of an enterprise communicator are represented by the following three interfaces:

� The application connect interface enables an application to connect to and disconnect from a communicator.
When connected, an application can send or receive HL7 messages. When disconnected, messages will be
buffered for the application until the next time it connects.

� The message manager interface enables an application to create new empty messages that it can fill with data
and send and also receive messages that have been sent by other applications.



Article 11 February 1997 Hewlett-Packard Journal      7

� The message filter interface enables an application to instruct an enterprise communicator to filter messages
based upon their data content. Messages that are filtered are not delivered to the application. For example,
an application might only want to receive messages that pertain to a particular patient. The enterprise
communicator will send to the application only those messages that pertain to the indicated patient.

It was soon recognized that the application construction interfaces represented only one perspective for defining a
component’s interfaces and that there were other perspectives that needed to be represented. Specifically, within a
healthcare enterprise, there are at least two other perspectives that need to be considered:

� System integration perspective, which is concerned with interconnections within and between systems for the
purpose of establishing interoperation (typically based upon relevant standards).

� System management perspective, which is concerned with how systems are configured, monitored,
administered, and maintained to preserve desired availability and performance levels.

These perspectives turn out to be extremely important as soon as one starts to address basic issues such as how a
component is started or halted, or how data within a component is accessed by systems and applications that are not
component-based.

For example, with an enterprise communicator, there are two system integration interfaces. One is an object-oriented
interface that enables a communicator to send and receive binary-encoded HL7 messages. The other is a TCP channel that
enables a communicator to send and receive ASCII-encoded HL7 messages.

For system management purposes, a communicator supports seven object-oriented interfaces and one SNMP-based channel.
The breadth of functionality needed to manage a communicator exceeds the functionality needed to use it for application
purposes. While this situation was surprising at first, it is consistent with the notion that enterprise-capable components
must be inherently manageable. For example, it would not be practical to deploy communicators throughout an enterprise
if there were no way to monitor their performance and intervene from a central location when problems occur.

The concept of organizing a component’s interfaces in terms of application construction, system integration, and system
management perspectives is one of the cornerstones of Concert. It is this way of thinking about components that has
enabled Concert to provide the basis for components that are truly capable of enterprise-wide deployment and use.

In general, the interfaces that make up these three perspectives can be thought of as providing an architectural foundation
for component use. Well-defined interfaces organized in a useful way lower the obstacles to using components in a black-box
manner to construct systems.

There is, however, a fourth perspective defined in Concert. The component customization perspective represents the
concept that a component may have internal interfaces that are similar to traditional application programming interfaces.
These interfaces can be used to modify a component’s functionality. The important distinction from an architectural
perspective is that the customization interfaces offer access to a component’s implementation and should not be confused
with the external view offered by the interfaces for the other perspectives.

Hardware analogies for software systems are often a stretch, but the following analogy for a Concert component and its
various interface perspectives has proven to be effective. A Concert component has sophistication that is roughly analogous
to a printed circuit board, such as a sound card that one might plug into a personal computer. The sound card provides
application construction interfaces for programs that enable the user to create and control sounds.

The sound card also provides:

� System integration interfaces so that the sound card can be used in conjunction with external MIDI-based
instruments (i.e., instruments that support the Musical Instrument Digital Interface) or with an audio speaker

� System management interfaces, often in the form of LEDs that indicate the card’s status and DIP switches that
enable configuring the card (e.g., setting interrupt vectors or resetting the card’s processor)

� Customization interfaces, such as sockets for additional memory chips, which enable changing the
functionality of the card, and unlike the card’s other interfaces, expose aspects of the card’s implementation.

These key component-interface perspectives are illustrated in Fig. 6.

The principles for organizing and defining interfaces for Concert components in terms of these perspectives has proven to be
productive and straightforward to implement using both CORBA and OLE automation technology. The work to conceive,
specify, and then hone the definition of each interface can be considerable, but the rewards can be substantial.

A well-thought-out and stable set of interface definitions has enabled component design and implementation to proceed at a
brisk pace. Further, the interface definitions form a rich basis for an interesting form of reuse referred to as specification

reuse. Some of the behaviors for new types of components can be reused from the set of interfaces and associated patterns
of use that have already been defined.

The use of a common and relatively constrained set of component interfaces across MPG and its partners will enable
components to be developed by a single MPG team, by teams in different MPG organizations, and by one or more of MPG’s



Article 11 February 1997 Hewlett-Packard Journal      8

Customization Interfaces

Component
Implementation

Application
Developer

Component
Customizer

Application Interfaces

Systems Integration Interfaces System Management Interfaces

System
Administrator

System
Integrator

Fig. 6. Component interface perspectives.

partners. These interfaces also serve as the basis for open MPG systems. The interface definitions are the key points at
which the systems can be opened.

Components and the Architecture Reference Model
The truly important dimension of Concert is not the underlying component model, which is a hybrid of COM and OMA
concepts, but the actual components that have been conceived and specified. The first step towards conceiving Concert
components was not the development of the component model, but rather the development of a high-level model for
healthcare enterprise information systems.

This model, referred to as the MPG architecture reference model (ARM), identifies the key architectural ingredients for
healthcare enterprise-capable applications and systems of applications.5 These ingredients do not prescribe particular
system features or technologies. Instead, they organize the architectural content of a software system into ten major
groupings.

Each group describes a broad, but nevertheless partitionable, subset of an overall system architecture. The structure of a
system is represented by seven facets, shown on the front of the cube shown in Fig. 7. The characteristics of the system that
are transitive across all of the facets are illustrated as three horizontal layers that are stacked behind the facets.

The technique for graphically depicting these characteristics as slices was adapted from work on open distributed
processing developed by HP’s former Network Systems Architecture group.

The alignment of the boxes that represent the facets is important. The facets that represent system features that are most
readily perceived by the end user are located towards the top of the illustration. Adjoining facets have significant
interrelationships and influences on each other.

An application in the traditional, intuitive sense is also illustrated as a slice, but this slice only cuts through the three inner
facets. In an actual system, the software that corresponds to these facets typically implements application-specific
behaviors.

In contrast, the four outer facets represent the functional elements of an application system required to relate applications to
each other in a coherent and consistent manner. These outer facets also represent the functional elements of an application
system needed to relate the overall system to the healthcare enterprise.

The final element of the architecture reference model is the recognition that an application system is designed, developed,
implemented, and supported using tools. The degree to which the design, development, implementation, and support
activities are productive is a direct function of the degree to which complementary tools are employed.

Further, for each of these activities, the degree to which insightful knowledge of the healthcare enterprise is applied governs
the degree to which the resulting application system meets the business needs of the system’s supplier and satisfies the
requirements of the clinical, operational, and business customers in the healthcare enterprise.

Outer Facets (in Fig. 7). The enterprise communication facet represents the capability for a system to interchange data with
other systems in the enterprise based upon relevant healthcare standards. Important elements of this facet are the data
formats and communication profiles that make up the interchange standards.



Article 11 February 1997 Hewlett-Packard Journal      9

Healthcare
Application
Knowledge

Design and
Development

Tools

Applications

Systems

Common User Environment

Application User Interfaces
• Present Application Data to the User
• Enable User to Control Functionality

Application Models, Services, Agents

Application Data Management

Enterprise Communication

• Application Data Processing Rules
• Common Application Services
• User Task and Workflow Automation

• Application Data Storage
• Application Data Integrity
• Mediate Data Exchange with 

Other Systems

• Interchange Formats
• Communication Profiles

In
fo

rm
at

io
n 

M
od

el

Sy
st

em
 M

an
ag

em
en

t

A
n 

A
pp

lic
at

on

• Metaphor, Look and Feel, Logon, 
Navigation, Use Context

Control (Maintainability, Supportability, etc.)
Trust (Security, Reliability, etc.)

Function (Performance, Usability, Localizability, etc.)

Application
System

Characteristics

Fig. 7. Concert reference model.

The information model facet represents the “conceptual glue” that is essential for deploying an application system within an
enterprise. The information model identifies and defines the entities and concepts that are important in the domain of the
healthcare enterprise. The information model also helps ensure that these entities, concepts, terminology, and clinical
processes have a consistent interpretation across all parts of an application system and the enterprise as well as between
different but related applications.

The system management facet represents the “operational glue” that enables the uniform and consistent management of the
system. This includes capabilities to:

� Turn the system on and off

� Assign passwords for users

� Install new software revisions

� Configure the functionality of the software

� Detect, enunciate, and log faults

� Intervene to correct faults

� Adjust performance parameters and resource utilization levels

� Provide end-user help-desk functionality.

The common user environment facet defines a unifying metaphor that governs user interactions with the underlying
applications. For example, for an electronic medical record application system, the metaphor might represent patient data
as sections in a virtual three-ring binder.

Under the umbrella of the metaphor, the common user environment also defines the healthcare-specific approach to
application user interface look and feel (e.g., clinically appropriate colors, fonts, terminology for common menu selections,
etc.), and it provides the highest-level controls, which enable the user to navigate to and between applications.

In addition to these specification-oriented elements, the common user environment includes capabilities that enable the
user to log on once to an application system and to establish and manage a use context which is applicable to any of the
underlying applications. The use context can include settings that identify the user and describe the user’s clinical role,
characterize the user’s physical location, and indicate the user’s natural language preference and default preferences for
application appearance and control settings.

For example, a physician’s use context might include the list of patients that the physician is responsible for. This list resides
within the implementation of the common user environment but is accessible to any application in the system.

As the physician switches between applications, applications are provided with information about the patients on the list
without requiring the physician to reestablish the list. The continuity provided by the use context enables applications to
achieve a high degree of coordination and cooperation. These qualities benefit the physician by providing a simpler and
more efficient user interface.



Article 11 February 1997 Hewlett-Packard Journal      10

Inner Facets. The outer facets of the architecture reference model define an enterprise environment within which an
application participates. An application is described in terms of three basic application facets. Representing an application in
this manner makes it possible to factor the responsibilities of an overall application into more granular categories.

While reminiscent of the increasingly popular multitier client/server systems (in which application processing is distributed
across a client and a hierarchy of servers), the three application facets are not about client/server computing. Instead, they
are about decomposing application software into three distinct sets of responsibilities. This decomposition serves as the
basis for scalable and extensible application implementations that can be deployed on a single computer or on a two-tier or
N-tier client/server network.

The application user interface facet is responsible for presenting application data to the user and for providing mechanisms
that enable the user to interact with and control the application. In this regard, the fundamental role of the user interface is
to transform computer-based data into tangible entities that a user can perceive and manipulate. While this is clearly the
overall responsibility of an application, the user interface portion of an application is focused on the ergonomic and
human-factor aspects of this transformation.

The models, services, and agents facet is responsible for:

� Models

� Validating user inputs before performing significant application data processing tasks and then performing
these tasks

� Mediating the transformation of application data into concepts and organizations that facilitate populating a
user interface with application data

� Services. Providing application-level facilities that are common among but independent of any particular
application

� Agents. Automating individual user tasks and multiuser workflows.

The models, services, and agents facet represents a substantial subset of an application’s overall responsibilities. However,
this facet is notably devoid of any responsibilities pertaining to the direct interaction with the user or with underlying data
sources. This facet is neither responsible for the “face” put on the application data, nor is it responsible for the application
data. Instead, this facet serves as the bridge in the transformation of data into entities that are tangible to the user.

The application data management facet is responsible for:

� Storing application data that is important to the user and the enterprise

� Mediating the exchange of application data with other systems in the enterprise

� Enforcing the information-model-based rules that ensure the semantic integrity of the application data over
time.

This facet is easily confused with a database. However, a database is a particular technology, while application data
management represents a set of related responsibilities. For example, application data could be stored in a file or come from
a real-time feed (e.g., a patient-connected instrument) as well as from a database.

Further, one of the key responsibilities of this facet is to enforce fundamental data integrity rules (often referred to as
business rules). This includes rules based upon the semantics of the data as identified in the information model (e.g., the
valid set of operations that can be performed on a medication order) and enforcement of more basic consistency rules
(e.g., ensuring that updates that affect multiple data items are reliably performed on all of the data items).

Application System Characteristics. The final part of the architecture reference model describes various characteristics of an
enterprise application system that requires the participation of all of the architecture reference model facets.

Functionality is the characterization of an application system in terms of user-perceived qualities that are independent of any
one application but must be adequately supported by all applications. These qualities include performance, usability, and
localizability.

Trust is the characterization of an application system in terms of its responsibilities to provide users with a system that is
secure, reliable, and available when needed.

Control is the characterization of an application system in terms of its capabilities to be administered, managed, supported,
and serviced.

Status and Conclusions
Concert was first applied in a deployable prototype electronic medical record (EMR) system that was developed by HP
Laboratories and the Mayo Clinic for use at Mayo’s Rochester, Minnesota site. Protoypes based upon four types of Concert
application components were developed for this project.

The architecture was subsequently applied by MPG to the development of the enterprise communication framework (ECF).
An implementation of the enterprise communication framework has been provided to the core members of the Andover
Working Group.



Article 11 February 1997 Hewlett-Packard Journal      11

For both of these projects CORBA and OLE technologies were employed and development proceeded on HP-UX*and
Windows -NT platforms. Substantial practical experience was obtained, and several important architectural refinements
were introduced. Most notably, however, the key concepts described in this paper were exercised and validated.

More recently, Concert has served as the basis for a variety of information system product development activities within
MPG. The specifications, experiences, and some of the software developed for the EMR and the ECF are being applied. It
typically takes an object-oriented software developer about two weeks to become familiar enough with the architecture to
begin productive development of Concert-based software. Indications are that once this investment is made, the
specifications provide a solid, self-consistent basis for system development.

The next challenge is to further optimize development productivity through the creation of Concert component development
frameworks. These frameworks would provide code skeletons for partially implemented components. Armed with an
appropriate set of productivity tools, application developers would be able to add the necessary features to the skeletons to
create fully functional components. Tools would also help the developer “wire” the components together to form an
application or a system of applications.

Acknowledgments
A substantial number of people were involved in the conceptualization and specification of Concert. It is through the efforts
of all of these people, working together in concert, that we were able to develop a comprehensive architecture in a relatively
short amount of time. The participants include: Don Goodnature, Mike Higgins, Jeff Perry, Jaap Suermondt, and Charles
Young from HP Laboratories Analytical and Medical Lab, Rafi Ahmed, Philippe De Smedt, Louis Goldstein, Jon Gustafson,
Pierre Huyn, Joe Martinka, James Navarro, Tracy Seinknecht, and Joe Sventek from HP Laboratories Software Technology
Lab, Tom Bartz and Dean Thompson from the HP Network and Systems Management Division, Robin Fletcher, David Fusari,
Jack Harrington, Nico Haenisch, and Geoff Pascoe from MPG R&D, Bob Anders, Steve Fiedler, Peter Kelley, Anthony
Nowlan, and Mike Stern from MPG HealthCare Information Management Division R&D, Rick Martin and John Silva from the
MPG Customer Services Division, and Alfred Anderson, Pat Cahill,  Calvin Beebe, Woody Beeler, Tom Fisk, and Bruce
Kaskubar from the Mayo Clinic. In addition, the author would like to thank Mark Halloran, HP MPG R&D manager, for his
enthusiastic support and executive sponsorship of this work.

References
1. Common Object Request Broker: Architecture and Specification, Revision 1.2, Object Management Group,

1993.
2. K. Brockschmidt, Inside OLE, Second Edition, Microsoft Press, 1995.
3.Version 2.2, Final Standard, Health Level Seven, December 1, 1994.
4. Concert Component Architecture: Component Concepts and Base Specification, Version 1.0, Concert

Document 95-11-1, Rev. A, November, 1995.
5. MPG Architecture Reference Model, Version 1.0, Rev. A, MPG Architecture Document 95-9-3, last revised

September 21, 1995.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX  is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open  is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

http://www.hp.com/hpj/97feb/fe97a11a.pdf
http://www.hp.com/hpj/97feb/fe97a11b.pdf
http://www.hp.com/hpj/97feb/fe97a11c.pdf
http://www.hp.com/hpj/97feb/fe97a12.htm
http://www.hp.com/hpj/journal.html


Subarticle 11a February 1997 Hewlett-Packard Journal      1

Components and Objects

Objects enable concepts to be developed using abstractions that represent real-world and computing concepts. The objects are
interconnected to form programs that perform useful tasks. Components are also objects. However, components have the added
dimension that they represent an economically and technologically practical way to organize and package an object-oriented system.
A component system can be developed, marketed, licensed, maintained, and enhanced on a component basis.

In an informal sense, components are just “bigger” objects. With this bigness comes the need, and fortunately, the technical feasibility
to support computing capabilities that are impractical for traditional “small” objects. For example, most component development
technologies enable a component’s external interfaces to be accessed through several different programming languages, and these
accesses can often be performed across a network. It would be overwhelming to support these capabilities for every small object.
However, supporting the capabilities becomes practical when objects are organized into bigger components.

Components can also be more cost-effective to develop and maintain than small objects. This is because components do more.
Similarly, components can be more efficient to develop and maintain than traditional monolithic programs. This is because components
don’t try to do everything.

In a well-architected system, each component will provide enough functionality to warrant development as a standalone entity that can
nevertheless be combined with other components to form fully functional applications. In a well-architected system, each component
will be a candidate for being catalogued as a product and marketed as an essential building block for an overall system.

Examples of healthcare-related software components include a component that describes and correlates medical terms based upon
standard schemes for encoding medical terminology, a component that checks whether medications being ordered for a patient might
interact in an adverse manner, a component that enables viewing physiological waveforms in a manner that preserves aspect ratios and
display size even when viewed on different display devices, and a component that enables applications to send and receive patient data
based upon healthcare electronic data interchange standards.

http://www.hp.com/hpj/97feb/fe97a11b.pdf
http://www.hp.com/hpj/97feb/fe97a11c.pdf
http://www.hp.com/hpj/97feb/fe97a12.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/97feb/fe97a11.pdf


Subarticle 11b February 1997 Hewlett-Packard Journal      1

The Andover Working Group

To establish a common implementation of data interchange standards in healthcare, in 1996 HP’s Medical Products Group led the
formation of the Andover Working Group (AWG) for open healthcare interoperability. This program is an industry-wide effort to
accelerate plug-and-play interoperability between healthcare computing systems. The lack of compatibility among information systems
is one of the most frequently cited information technology problems facing the healthcare industry today.

In 1996, the core membership of AWG included fifteen healthcare vendors and three healthcare providers. Each of these organizations
contributed engineering resources to work on defining the enterprise communication framework (ECF) for HL7. In addition, in 1996, the
AWG supporting membership included over one hundred additional vendors and providers. These organizations attended early review
meetings of the ECF and provided the AWG with feedback and guidance about its processes, technology, and future directions.

The objective of the AWG is not to define new standards for interoperability. Instead, the AWG seeks to increase the commonality
among the implementations of relevant healthcare computing standards. Standards such as HL7 walk a fine line between being
prescriptive enough to be useful and being flexible enough to be widely accepted in the industry. However, inherent in this flexibility
is the opportunity for implementers of the standard to make different implementation decisions. Different and often incompatible
implementation decisions reduce the likelihood that systems will interoperate.

To overcome these problems, the AWG has developed an implementation of HL7. This implementation consists of detailed message
profiles in which the specific HL7 messages that ECF-based applications can send and receive are described. The software that enables
applications to use these messages easily is also provided in the implementation. The core of this implementation is a software
component called an enterprise communicator.

The derivation of ECF message profiles involved the iterative refinement of an elaborate object-oriented information model by the AWG
representatives. The enterprise communication framework software follows the component architecture described in this article. The
result is a high degree of interoperability in the form of data interchange between healthcare systems without the usual system
integration costs.

The first example of ECF-based interoperability was demonstrated in October 1996 when twelve applications developed by six different
vendors, running on three different computing platforms, were modified to use the ECF software. The applications were able to
participate in a detailed scenario that simulated a patient’s admission to a hospital, ordering of a series of laboratory tests and reporting
of the corresponding results, and an eventual discharge from the hospital. This level of interoperation was the first concrete proof of the
effectiveness of the AWG as an organization and of the ECF as truly enabling software.

http://www.hp.com/hpj/97feb/fe97a11.pdf
http://www.hp.com/hpj/97feb/fe97a11c.pdf
http://www.hp.com/hpj/97feb/fe97a12.htm
http://www.hp.com/hpj/journal.html


Subarticle 11c February 1997 Hewlett-Packard Journal      1

Multiple Interfaces in COM

In Microsoft’s Common Object Model (COM), all components implement the interface IUnknown. This interface specifies only a few
methods (method is the COM term for operation), including the method QueryInterface. A client of a component uses QueryInterface to
interrogate the component to determine if it implements an interface of interest to the client.

QueryInterface accepts a single input parameter, which is used to indicate the interface of interest. If the component supports the
indicated interface, a reference to the interface is returned. This reference can then be used by the client to access the component via
the interface. If the interface is not supported, then the special value NULL is returned.

Conceptually, within a running instance of each COM component, a table of the interfaces implemented by the component is maintained.
When the component instance is initialized, its table is populated with the names of all the interfaces that the component implements.
Associated with each name is a pointer to the code that implements the particular interface.

When QueryInterface is called by a client of the component, the component consults its table of implemented interfaces. If the interface
being queried about is implemented, then the reference that is returned contains data that essentially points to the implementation of
the interface. This data enables the component’s client to access the interface and therefore its underlying implementation.

In COM, the interfaces that are supported by a component cannot change once the component has been initialized.

http://www.hp.com/hpj/97feb/fe97a11.pdf
http://www.hp.com/hpj/97feb/fe97a12.htm
http://www.hp.com/hpj/journal.html


Article 12 February 1997 Hewlett-Packard Journal      1

Object-Oriented Customer Education

As customers require more trusted advice to solve their business
problems, the choice of education solutions has become a
strategic issue that often precedes and directs the choice of
technologies.

by Wulf Rehder

Whether you buy a laptop computer or a lawn mower, you expect to learn how best to use it. For some products it is enough
to skim the user’s manual. For others you need to attend a class. In the past, product training was considered an attribute of
product support. It came bundled with the product and was an expected feature like a power cord or the certificate of
warranty. This situation has changed. When you buy a toy, batteries are no longer included. Similarly, education is no longer
automatically included and free with the large, enterprise-wide solution purchases customers make today.

In such enterprise projects even laptop computers must be designed to work together with many other products that are
often distributed in networks over large entities or even different countries. In these environments, training on how to use a
single, standalone product is no longer sufficient. Customers now expect more comprehensive services, ranging from
training in soft skills such as design methodologies and project management to proficiency in hands-on implementation and
online troubleshooting.

The complexity of solutions, the size of customer projects, and the fact that computer systems are increasingly mission-
critical for most businesses have led to the unbundling of product training and to the creation of entirely new product lines
for professional consulting and education. Training has changed from being a product accessory to being a product itself.
Customer education has grown from under the umbrella of product support to becoming a large and profitable industry by
itself. In this paper, I will focus on the way HP’s customer education, as part of the HP Professional Services Organization,
is meeting the new challenges of developing and delivering to customers a cohesive suite of object-oriented education
products.

Managing the Transition
It is a truism that every act of learning is a passage from knowing less to knowing more. However, customer education is
more ambitious. This ambition shows itself in three ways. First, it is not enough to fashion data and information into a
consistent, meaningful body of knowledge. While in a training class, customers must be led from “knowing what” to
“knowing how” and being able to apply the new learning to their real-life problems. More knowledge must be transformed
into more skills. However, there is a second, complementary aspect to learning: learning means not only acquiring more
skills, but also acquiring different skills for new tasks in a changing environment.

The successful management of adapting to this change and the transition to higher levels of knowledge are the objective of
customer education for all job roles as shown in Fig. 1.

Executives

Managers

Professional
Teams

End Users

Transition Educational Services

Executive Programs

Management Workshops

Technology Workshops

Transition Courses

Implementation
Skills Courses

End User Courses

Education Life
Cycle Services

Fig. 1. Enterprise-wide approach to managing transitions.



Article 12 February 1997 Hewlett-Packard Journal      2

Executives must be made aware of the risks and benefits the change to new technologies and processes entails for the entire
company. With this awareness they will acquire the confidence, authority, and credibility to lead their business into
previously uncharted terrain. Managers obtain the understanding and expertise to make the right technical decisions for
their teams to be successful. Designers and developers master new professional crafts that help them apply the lessons
learned for the creation of new products. Finally, end users realize the concrete benefits of the new technologies and
processes.

The third defining component for contemporary customer education is its comprehensiveness. Fig. 2 specifies the three
branches of a company’s assets that need to transition together in a balanced way: its people, processes, and technology.
All three are centered on serving common business objectives.

Business-
Centered

Objectives

People Process

Technology

Fig. 2. HP’s people, process, and technology approach.

This brief sketch has far-reaching practical consequences for the positioning, development, and delivery of customer
education solutions. They do not merely add value to a product, but create their own suite of added values. Fig. 3 shows
this value chain from the point where the actual interaction with the customer occurs (for instance, course content research
and development phases are left out). As appropriate, some phases will be traversed repeatedly, depending on the results
obtained so far and on the quality measures (e.g., completeness, level of detail) applied in the particular phase. Therefore,
the links of the chain need to be interpreted as cycles. Under the name of education life cycle services, this simplified
framework articulates the fact that customer education teaches how to manage change and how to evolve new skills.

Scoping the
Change

Needs
Assessment

Education
Planning

Education Solutions
Delivery

Evaluation/
Follow-Through

Steering the Change Skills Gap Analysis Custom Curriculum
Planning Custom Development Survey and Feedback

Project Retrospective

Long-Term PlanningCertification

Education DeliveryRole-Specific
Curriculum PathsDemographic AnalysisEducation Transition

Planning

Managing for
Productivity

Phases

Services

Results and Quality Measures

Fig. 3. Education life cycle services.



Article 12 February 1997 Hewlett-Packard Journal      3

Customer education has become the industry of facilitating the transition from Tennyson’s “blind and naked ignorance” to St.
Thomas Aquinas’ skill of man “to know what he ought to do.”

Know Thyself
Before answers about the right path to object technology can be given, the right questions about the starting point, the path
itself, and the goals have to be asked. To evaluate the starting point, HP’s customer education services have developed a
workshop called skills gap analysis.1 Fig. 4 shows a step-by-step outline of this course. During the analysis, which is done
jointly with the customer, the following documents are created to serve as the basis for the next transition steps:

� A written statement about business needs

� An inventory of current skills

� A list of additional skills to close the gap between current skills and identified needs

� Validation of findings and determination of action items.

Agreement on Engagement
Procedures and Expectations

Formal Kickoff

Understand Your Business
Requirements

Determine Future
Skills Needed

Inventory and Evaluate
Current Skills

Define Missing Knowledge,
Skills, and Attitudes to
Perform Future Tasks

Final Quality Assessment

Fig. 4. Skills gap analysis methodology.

A skills gap analysis addresses a company’s overall training needs and by itself does not result in a detailed training plan. To
be more relevant to the discussion, we will focus on objects. The customized, object-specific version of a skills gap analysis
is the object-oriented transition assessment workshop.2 Similar to the skills gap analysis, the customer and at least two of
HP’s educational and technical consultants work through three sets of questions, assessing:

� The goals of a transition to objects

� The present skill level and object exposure

� The customer’s current software development process.

A selection of some of these questions is enumerated on this page. In the transition assessment workshop, the skills gap
analysis culminates in the preparation of a list of the ten biggest obstacles for a successful move to objects, jointly agreed
upon by the customer and HP’s consultants. These obstacles are different from company to company, but they typically fall
into the categories of management commitment, organized barriers, fear of change, scarcity of resources, and loyalty to



Article 12 February 1997 Hewlett-Packard Journal      4

legacy systems. Rarely are the inhibitors purely technical; the switch to new object-oriented tools and products is less
problematic than overcoming the “soft” issues just mentioned.

This list of obstacles is the document upon which HP’s team bases its recommendations for a concrete object adoption
agenda, including job-specific curriculum paths. Such a detailed plan is the final outcome of the object-oriented transition
assessment workshop.

After the workshop, with the enthusiasm usually quite high, many software development teams want to start their first
object-oriented development project without delay. At this juncture, the HP consultant assumes the role of a mentor and
monitors the speed, direction, and results of the transition that is now under way. See Subarticle 12b “Starting an

Object-Oriented Project,” which summarizes a few caveats collected from many mentoring sessions.

Four Pillars of Soft Skills
A glance at the life cycle in Fig. 3 shows that the next phase is education planning. Based on the skills needs, curriculum
paths are created that match specific jobs and roles designed to fill the needs. If, for example, system modeling skills are
missing, the joint HP-customer team may define the new role of a system architect and recommend a series of courses to
retrain designers to become architects. Once the roles are identified, the solutions will be designed and implemented.
Experience has shown that this is not yet the place to select technologies (such as tools and implementation languages) or
products (middleware, databases). Instead, the success of a transition to object technology appears, as our case studies with
customers have shown, to be determined by the mastery of four soft skills: software architecture,3 analysis and design
methodology,4 project management,5 and systematic reuse.6

Software Architecture. Of the four skills mentioned above, architecting a software system is perhaps the most difficult, yet the
most important and least well-understood skill. For the sake of brevity, three of the most important aspects of this difficulty
are discussed here. First, there are at least four different views of a system architecture that emphasize different but
overlapping concerns of high-level system design (see Fig. 5).

Execution Architecture Conceptual Architecture

The System

Components,
Interfaces,

Policies, and
Guidelines

Processor yProcessor x

Code Architecture Physical Architecture

Fig. 5. Four architectural views.

Second, there is the choice of a viable reference architecture for an enterprise, which is a blueprint realization of an
architecture that best fits a given business purpose.

One of the most successful frameworks for such a reference architecture is the so-called three-tier architecture (see Fig. 6).
Once the tiers with their subsystems and interface specifications have been defined, it is possible to map products into the
framework. For example:

� VisualBasic, Powerbuilder, or VisualWorks for the presentation layer

� C++ to build application programs whose components may be running on distributed servers

� A database or data warehouse like HP’s Depot/J for the data management system

� Softbench for the development environment

� The Object Request Broker (ORB) software for the infrastructure logic that manages the communication
among the distributed software components. 

However, it is advisable to postpone these technology choices until after a thorough analysis and design methodology has
been applied based on the particular customer requirements and the anticipated use cases of the planned system. See
Article 10 for a definition of use cases.

http://www.hp.com/hpj/97feb/fe97a10.htm
http://www.hp.com/hpj/97feb/fe97a12b.pdf
http://www.hp.com/hpj/97feb/fe97a12b.pdf


Article 12 February 1997 Hewlett-Packard Journal      5

Infrastructure
Logic

Development
Environment

Data
Management

Presentation

Business
Logic

Business Application

Fig. 6. The three-tier architecture framework.

The third difficulty is the lack of a generally accepted notation that is simple to apply and learn and yet rich enough to
express the complex semantics of objects and their interactions in the different layers of a software system. HP and its
partners are working together in committees chartered by the Object Management group (OMG) to formulate such a unified
architectural language.

Analysis and Design. Better known and more mature than architectural models are the software analysis and design methods.
They are often called methodologies, to distinguish them from the methods (i.e., the procedures or functions) owned by
objects. A methodology defines a process that allows the division of work into distinct phases, each of which has
well-defined exit criteria (e.g., finishing a graphic object model, drawing all dependency diagrams, and agreeing on design
documents). The goal is to translate informal customer requirements into a more formal structure that then guides the
implementation. Besides structured analysis and structured design other methodologies include the waterfall life cycle
model of software development and HP Fusion.7

Project Management. Once the software architecture has been chosen (e.g., a three-tier reference model) and a methodology
team has gone through the phases of system requirements, analysis, and design, a project team needs to be chosen to
implement the design that realizes the architecture and solves the business problem. At this point of the transition, thinking
about the peculiarities of object-oriented project management becomes important. Because of the inherent modularity of
object-oriented design and the ensuing independence and autonomy of subteams, team building and communication may
become an issue. New roles and responsibilities, such as framework architect, pattern designer, and class librarian need to
be integrated. Since object-oriented design favors the implementer who postpones coding and (re)uses components as much
as possible, performance evaluation and reward systems need to be reconsidered. This is opposed to the model of rewarding
the implementer who “hacks” out the most code.

Reuse. The fourth of the recommended soft skills essential for a successful move to object-oriented software development is
the incorporation and long-term management of systematic reuse. This course combines a discussion of

reuse technology (frameworks, patterns, software kits, components, and standards), and tools and processes with
organizational and management issues. These latter nontechnical concerns often have the biggest impact on change
management and the success of the transition to objects.8 In the spirit of hands-on skill development, the second part of this
course simulates the steps of systematically building reuse into a software organization. Fig. 7 shows the incremental steps
from no reuse to systematic reuse through stages that mirror the phases of the Capability Maturity Model (CMM), which is
widely used in the assessment of software skills.9,10,11

Projects versus High Volume
From the discussion above it should be obvious that the approach to customer education requirements for the transition to
objects is not simply a matter of technology and product training. Just as an information technology department is much
more than a random collection of computers and wires, so is today’s customer education more than a collection of training
courses. It has become an industry with finely tuned product lines that match the requirements of job groups by providing
comprehensive training paths, from introductory courses to in-depth specialized skills.

However, in addition to these task-oriented, individualized curriculum paths, increasing emphasis is being put on integrated
curricula for project teams, departments, and entire organizations. This latter trend has led to two distinct, but collaborating
branches within the customer education business. One branch addresses the difficult, unique custom software project or the
transition of, say, a COBOL programming team to Smalltalk proficiency. Efforts like these are resource-intensive, of high
complexity, and more often than not also low-volume affairs. (They are the human learning system equivalents of highly
sophisticated hardware and software systems, which usually need to be custom-made.)



Article 12 February 1997 Hewlett-Packard Journal      6

Reuse
Benefits

Investment, Experience, and Time

Initial/Ad Hoc Emerging Defined Managed

No Reuse

Code Salvaging

Some Planned
Reuse and Some

Components

Management
Support and

Partial Product
Coverage

Architecture,
Process, and
Metrics Used

Systematically

Systematic
Domain-
Specific
Reuse

Reduce
Development

Time

Reduce
Maintenance

Costs

Broader
Coverage

Interoperability
High Reuse Levels

Reuse Enabled
Business

Improve Time to Market and Quality

Fig. 7. Incremental approach to reuse and the resulting benefits.

For custom-made education solutions to be affordable, such highly complex offerings need to be created in a repeatable and
modular manner. Examples of custom courses are the total immersion programs. In these programs, which are variously
known in the industry as residency programs or boot camps, entire teams are led through a four-to six-week customized
curriculum to object-oriented literacy.

The other, complementary branch of customer education addresses the high-volume, lower-complexity demands. These are
requests for standard programming language courses, fundamentals of operating systems, system administration,
networking, and relational databases—all of which figure prominently in most two-or-three-tier business application
developments.

These conditions of serving widely diverging interests are posing challenges for the development, sales, and delivery of
education solutions in general and object-oriented education in particular. The challenges are similar to the ones known in
traditional product development:

� Primary and secondary research explore the market conditions

� Investigations define product possibilities

� Curriculum creation involves outsourcing, partnerships, and collaborations with product divisions and the field

� After going through the typical lab cycles, prereleased material is validated in alpha and beta tests.

In parallel, marketing collateral is being prepared, data sheets, sales briefs, and advertising copy are written, catalogs appear
worldwide, and indirect and direct sales are made. To be successful, a well-managed and diverse team of course designers,
business developers, solution architects, education advisors, technology specialists, consultants, and instructors needs to be
trained and deployed worldwide. Issues of localization, government regulations, copyright protection, postrelease support,
updates, and pricing (for instance, discounts, volume buying, specials) are again not different from the rollout of major
hardware and software products.

In light of these considerable complexities, training vendors may be tempted to define their solutions by offering a variety
of topics for which they have in-house technology expertise and then to reshape the customer needs along the lines of these
topics. The true challenge consists, however, in basing education solutions on the transition assessment workshops and
education plans that have been crafted and agreed upon jointly by the customer and education consultants. Only such
solutions have the strategic impact of preceding and guiding the choice of implementation technologies.

Point Solutions and Product Training
Supporting the larger picture of education solutions outlined above are several training offerings that are more specialized,
narrower in scope, or tool and technology related. Here, training usually tracks the release, purchase, and installation of
products. As a consequence, training courses have to be updated in a rhythm following the product updates. This especially
includes languages converging towards standards, such as ANSI C++, different implementations of new languages, such as
Java, and products that bridge evolving de facto standards, such as those for distributed computing. Examples of the latter
are the Object Request Broker (ORB) implementations which adhere to the Common Object Request Broker Architecture
(CORBA) standards and serve as interoperability middleware between CORBA objects and the emerging Microsoft  OLE
automation product suite. Such software has to be supported by several operating systems and communication protocols. In
the case of HP’s ORB Plus 2.0 these are the HP-UX*, SunSoft Solaris, and Microsoft NT platforms and the IIOP (Internet



Article 12 February 1997 Hewlett-Packard Journal      7

Inter-ORB Protocol, platform independent) and DCE CIOP (Common Inter-ORB Protocol, HP-UX only) standards. Using the
IIOP protocol, ORB Plus 2.0 will interoperate, for instance, with Distributed Smalltalk software from ParcPlace-Digitalk.

From these typical examples it becomes obvious that narrow, specialized point solutions and product training can be as
labor-intensive as the solutions centered around the care for people and processes. Since the competitive pressure for
training on shrink-wrapped products is fierce (you can learn C++ in community colleges almost free), larger education
providers have surrounded themselves with satellites of smaller, agile partners, who can, in the analogy used before, be
compared to suppliers of hardware and software parts.

Challenges and New Directions
One of the most exciting events in the emergence of object technology is the recent promise of its convergence with internet
technology. To begin with, Java is a C++-like object-oriented language that allows the objects (for instance, the ones created
in its applets) to be shared over the net in a platform independent way. Java has spawned several new customer education
offerings, including ones on web security and on how to use the web for commercial transactions.

Furthermore, with the web becoming more familiar as a medium for information exchange, it is also fast becoming
a candidate for alternative training delivery, complementing computer-based training (CBT), CD ROMs, and the traditional
lecture and lab format. Such a departure from copyrighted class material to an essentially open, public forum creates new
challenges, but these challenges are no more severe than the ones faced by software distribution and publishing on the net.
This is especially true in the high-volume, point-solution, and product-training market where the material is rapidly becoming
part of a commodity business with small differentiating value and practically no proprietary lock on content. Instead, as Tim
O’Reilly12 suggests (and practices for his own on-line business of computer books), more important than copyright is the
development of a brand identity that represents a consistent, trusted selection of high quality. This is where high-volume
customer education may be headed in the future.

Acknowledgments
My view of customer education as an autonomous business has evolved in discussions with Patricia Gill-Thielen, Brian
McDowell, Tom Ormseth, Morris Wallack, and Ann Wittbrodt. While they are not to blame for my opinions, I hope that they’ll
accept my thanks for mentoring me when I joined their team.

References
1. Skills Gap Analysis Workshop, Product Number H6230A.
2. Object-Oriented Transition Assessment Workshop, Product Number H6290X+002.
3. Software Architecture Workshop, Product Number H6290X+009.
4. Analysis and Design Methodology Workshop, Product Number H5851S.
5. Project Management Workshop, Product Number H6516S.
6. Systematic Reuse Workshop, Product Number H6514S.
7. T. Cotton, “Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for Fusion,” Hewlett-Packard

Journal, Vol. 47, no. 4, August 1996, pp. 25-38.
8. M. Griss, I. Jacobson, and P. Jonsson, Software Reuse: Architecture, Process, and Organization for Business

Success, Addison-Wesley, January 1997.
9. W.S. Humphrey, Managing the Software Process, Addison-Wesley, 1989.
10. M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, Capability Maturity Model for Software, Version 1.1,

Software Engineering Institute, CMU/SEI-93-TR-24, February 1993.
11. D. Lowe and G. Cox, “Implementing the Capability Maturity Model for Software Development,” Hewlett-Packard

Journal, Vol. 47, no. 4, August 1996, pp. 6-14.
12. T. O’Reilley, “Publishing Models for Internet Commerce,” Communications of the ACM, Vol. 39, no. 6, June

1996, pp. 79-86.

UNIX  is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

X/Open  is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

http://www.hp.com/hpj/97feb/fe97a12a.pdf
http://www.hp.com/hpj/97feb/fe97a12b.pdf
http://www.hp.com/hpj/journal.html


Subaticle 12a February 1997 Hewlett-Packard Journal      1

Questions about Using Objects1

What are the goals for your transition to objects?
� Following the general evolution of the software industry
� Benefitting from external libraries of reusable components
� Making the resulting software easier to modify
� Improving time-to-market for new products
� Decreasing software development costs.

What is your company’s current exposure to object technology?
� Novice level
� Some people have general knowledge
� Some people have used object-like technology, for example by programming in Ada
� The company has successfully completed a small object-oriented project
� The company has successfully completed a substantial object-oriented project (more than 300 classes) using a hybrid

language like C++, CLOS, or a purely object-oriented language like Eiffel or Smalltalk.

What is your company’s current software development process?
� It develops most of its software in-house
� It outsources its software development
� It has a recommended software development process (such as the waterfall model, the spiral model, prototype based,

etc.).

Reference
1.  B. Meyer, Object Success—A Manager’s Guide to Object Orientation, Its Impact on the Corporation and its Use for Reengineering the
Software Process, Prentice Hall, 1995.



Subarticle 12b February 1997 Hewlett-Packard Journal      1

Starting an Object-Oriented Project

Reading books and magazines will not always guide you through your first object-oriented project. A recent issue of a trade magazine
had 24 advertisements for CASE tools, 26 advertisements for products, and 23 advertisements for object-oriented consulting services.
Add to this the lack of standards, and the process of adopting object technology looks truly daunting. However, there are great rewards
as long as you are ready to follow a well-defined process and make a longer-term commitment.

You and your managers may think that the success of the move to objects depends on the size of the projects undertaken, the number of
people involved, and the tools and techniques used. However, in reality these factors have little impact on the transition’s success. As a
rule of thumb, the transition of a single software development team to object technology takes at least a year.

You will most likely find your organization in one of two stages of adoption: the investigation phase or an early adoption phase. If in the
investigation phase, your company is ready to make some investments, but is not sure yet if object technology is the right choice. The
objective of your project, which should be important but not mission-critical, is to provide a feasibility proof and show the measurable
benefits. If in the early adoption phase, higher management has probably made a strategic decision in favor of object technology, and it
is expected that your project will make a significant contribution to the business and provide a competitive advantage.

There are several questionnaires that help in assessing where your company is in the transition process. Here are some questions that I
have found useful:
� Can you formulate a business case for your project that will yield a measurable, positive net present value (NPV) for your

organization?
� What are the investments necessary to fill the skill gaps found in your skills gap analysis?
� What are the specific success factors and possible risks for this project?
� What object architecture will you pick and why?
� What outcome of your project shows the feasibility of object technology for your organization or your whole company?
� What will you do with the existing legacy systems?
� Does it make sense to connect your project to the potential of the intranet and internet?

The object-oriented transition assessment workshop includes these and other questions. They have proven helpful for customers and,
despite their simplicity, are surprisingly hard to answer.

Ramesh Balasubramanian
HP Professional Services Organization
Objects Consultant

http://www.hp.com/hpj/97feb/fe97a12.pdf
http://www.hp.com/hpj/journal.html

	bigcover_0297.jpg
	feb97a1.pdf
	feb97a1a.pdf
	feb97a2.pdf
	feb97a3.pdf
	feb97a4.pdf
	feb97a5.pdf
	feb97a6.pdf
	feb97a6a.pdf
	feb97a6b.pdf
	feb97a6c.pdf
	feb97a6d.pdf
	feb97a6e.pdf
	feb97a6f.pdf
	feb97a6g.pdf
	feb97a7.pdf
	feb97a7a.pdf
	feb97a7b.pdf
	feb97a8.pdf
	feb97a8a.pdf
	feb97a9.pdf
	feb97a10.pdf
	feb97a11.pdf
	feb97a11a.pdf
	feb97a11b.pdf
	feb97a11c.pdf
	feb97a12.pdf
	feb97a12a.pdf
	feb97a12b.pdf
	Acr1A.tmp
	Local Disk
	HP Journal - Table of Contents - February 1997 Volume 48 Issue 1



